Kytovci: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Použil jsem informace z anglické wiki o Balaena mysticetus. Jestli jsem to udělal špatně tak mě nekamenujte, jsem noob.
Rozsáhlá revize kapitol charakterizujících kytovce: reorganizováno, doplněno a rozšířeno, doplněny citační zdroje, obrázky, korigovány nepřesné údaje.
značky: možné subjektivní formulace možné problémové formulace
Řádek 1: Řádek 1:
{{Taxobox
{{Taxobox
| jméno = Kytovci
| jméno = Kytovci
| obrázek = The Cetacea.jpg
| obrázek = The Cetacea.jpg
| popisek = Zástupci kytovců: nahoře [[vorvaň]], v levém sloupci [[kosatka dravá]] a [[keporkak]], v prostředním sloupci [[plejtvákovec šedý]], [[sviňucha obecná]] a [[narval]], v pravém sloupci [[delfínovec amazonský]], [[vorvaňovec tropický]] a [[velryba jižní]]
| popisek = zástupci kytovců
| velikost obrázku = 258px
| velikost obrázku = 258px
| říše = [[živočichové]] (Animalia)
| říše = [[živočichové]] (Animalia)
| kmen = [[strunatci]] (Chordata)
| kmen = [[strunatci]] (Chordata)
| podkmen = [[obratlovci]] (Vertebrata)
| podkmen = [[obratlovci]] (Vertebrata)
| třída = [[savci]] (Mammalia)
| třída = [[savci]] (Mammalia)
| řád = [[sudokopytníci]] (Cetartiodactyla)
| řád = [[sudokopytníci]] (Cetartiodactyla)
| podřád = '''kytovci''' (Cetacea)
| podřád =
| podřád popsal = [[Mathurin Jacques Brisson|Brisson]], [[1762]]
| podřád popsal =
| druhotné dělení = [[infrařád]]y
| druhotné dělení = parvřády (malořády)
| podřazené taxony =
| podřazené taxony = * [[kosticovci]] (Mysticeti)
* [[kosticovci]] (Mysticeti)
* [[ozubení]] (Odontoceti)
* [[ozubení]] (Odontoceti)
| sesterska = [[hrochovití]] (Hippopotamidae)
| sesterska = [[hrochovití]] (Hippopotamidae)
| infrařád = '''kytovci''' (Cetacea)
| infrařád popsal = [[Mathurin Jacques Brisson|Brisson]], [[1762]]
}}'''Kytovci''' (Cetacea) jsou podskupinou ([[Infrařád|infrařádem]]) [[Sudokopytníci|sudokopytníků]] [[Adaptace|adaptovanou]] na život v moři, jejich [[Sesterská skupina|sesterskou skupinou]] jsou [[hrochovití]].<ref name=":33" /> Kvůli výrazným [[Anatomie|anatomickým]] a [[Fyziologie|fyziologickým]] adaptacím na vodní způsob života je jejich [[Evoluce|evoluční]] souvislost se suchozemskými [[savci]] dosti zastřená a donedávna byli považováni za samostatný [[Řád (biologie)|řád]]. Mezi jejich nejnápadnější znaky související s přechodem do vody paří přeměna předních končetin v [[Ploutve (plavání)|ploutve]] a vymizení zadních končetin, vznik horizontální (vodorovné) ocasní ploutve, která je hlavním orgánem pohybu, ztráta [[Srst|srsti]], ztráta [[Vnější ucho|vnějšího ucha]], získání hydrodynamického vřetenovitého tvaru těla a další. Typicky savčím projevem je jejich potřeba dýchat vzduch. Někteří kytovci sice mohou pod vodou vydržet i přes dvě hodiny, ale nakonec se nadechnout musí. [[Nosní dírka|Nozdry]] jsou u kytovců posunuty v podstatě na temeno hlavy, [[lebka]] je touto tzv. teleskopizací oproti lebce jiných savců silně modifikovaná.<ref name=":15">{{Citace monografie
| příjmení = Mazák
| jméno = Vratislav
| titul = Kytovci
| vydání = 1
| vydavatel = Státní zemědělské vydavatelství
| místo = Praha
| rok vydání = 1988
}}</ref> Evoluční proměna původně suchozemských savců v plně vodní zvířata je dnes dobře dokumentovaná množstvím [[Fosilie|fosilních]] dokladů.<ref name=":11" />

Mezi kytovce řadíme přes 80 [[Druh|druhů]] v 13–14 [[Čeleď|čeledích]].<ref name=":34" /> Lze je rozdělit na dvě výrazně rozdílné podskupiny, [[Kosticovci|kosticovce]] (Mysticeti) a [[Ozubení|ozubené]] (Odontoceti). Kosticovci jsou bezzubí, svou kořist (nejčastěji [[Kril|krill]], tedy [[Pelagiál|pelagické]] [[Korýši|korýše]]) filtrují z vody pomocí [[Keratin|rohovinových]] [[Kostice (kytovci)|kostic]]. Patří mezi ně obrovští savci jako jsou [[Velryba|velryby]] nebo největší živočichové všech dob, [[Plejtvákovití|plejtváci]]. Ozubení jsou typičtí [[Predátor|dravci]], živí se ponejvíce [[Ryby|rybami]] nebo [[hlavonožci]]. V tlamě mohou mít mnoho kuželovitých nerozlišených zubů, ale mohou být i bezzubí. Nejznámější (a nejprozkoumanější) jsou mezi nimi [[Delfínovití|delfíni]], [[Kosatka dravá|kosatky]], [[Sviňuchovití|sviňuchy]], [[Běluha severní|běluha]] nebo [[Vorvaň obrovský|vorvaň]]. Patří mezi ně nejlepší a nejvytrvalejší potápěči mezi savci – [[Vorvaňovcovití|vorvaňovci]]. Velice zajímavou vlastností ozubených je schopnost [[echolokace]] – využívání [[Ultrazvuk|ultrazvuků]] k mapování okolí a pátrání po kořisti pomocí vnímání ozvěn.<ref name=":15" />

== Systematika a taxonomie kytovců ==
[[Soubor:Cetus Hevelius.jpg|náhled|''Cetus'', mořská obluda jako [[souhvězdí]] (v češtině „[[Souhvězdí Velryby|velryba]]“)]]
Kytovci odedávna budili pozornost svou zvláštní směsicí „rybích“ a savčích znaků. Ve 4. st. př. n. l. se o nich ve svých spisech známých pod latinskými jmény ''Historia animalium'' a ''De partibus animalium'' zmiňuje [[Aristotelés]].<ref>{{Citace monografie
| příjmení = Aristoteles
| titul = On the Parts of Animals
| titul původní = De Partibus Animalium
| url = http://classics.mit.edu/Aristotle/parts_animals.html
| překladatelé = William Ogle
| rok vydání = 2004
| kapitola =
}}</ref><ref>{{Citace monografie
| příjmení = Aristoteles
| titul = History of Animals
| titul původní = Historia Animalium
| url = https://archive.org/details/aristotleshisto00schngoog/page/n4/mode/2up
| překladatelé = Richard Cresswell
| rok vydání = 1897
}}</ref> Uvědomuje si, že dýchají vzduch, rodí živá mláďata, která kojí, a považuje je za tvory „na půli cesty mezi vodními a suchozemskými [zvířaty]“.<ref>{{Citace monografie
| příjmení = Aristoteles
| titul = De Partibus Animalium
| titul původní =
| url =
| překladatelé =
| rok vydání =
| kapitola = Kniha III., část 6
}}</ref> Intuitivní vnímání většiny plně vodních obratlovců jako „ryb“ se projevuje ještě v díle [[Carl Linné|Carla Linného]], který teprve ve slavném desátém vydání svého ''[[Systema naturae]]'' řadí kytovce mezi savce (jako jejich 8., poslední řád Cete),<ref>{{Citace monografie
| příjmení = Linné
| jméno = Carl
| titul = Systema naturae
| url = https://www.biodiversitylibrary.org/item/10277#page/3/mode/1up
| vydání = 10
| vydavatel = Laurentii Salvii
| místo = Stockholm
| rok vydání = 1758
}}</ref> zatímco v předchozích vydáních je řadí mezi ryby.<ref>{{Citace monografie
| příjmení = Gingerich
| jméno = Philip
| titul = Great Transformations in Vertebrate Evolution
| editoři = Kenneth Dial et al.
| vydavatel = University of Chicago Press
| rok vydání = 2015
| kapitola = Evolution of Whales from Land to Sea
| isbn = 978-0226268255
}}</ref>

Vědecký název řádu je odvozen od [[latina|latinského]] slova ''cetus'', jehož původní význam byl „velké mořské zvíře“. Tento výraz pochází z [[řečtina|řeckého]] slova ''ketos'',<ref>{{Citace elektronického periodika
| titul = κῆτος - Wiktionary
| periodikum = en.wiktionary.org
| url = https://en.wiktionary.org/wiki/%CE%BA%E1%BF%86%CF%84%CE%BF%CF%82
| jazyk = en
| datum přístupu = 2021-05-30
}}</ref> jež označovalo velrybu, jakoukoliv obrovskou rybu či „mořského netvora“. Vědní obor, který se zabývá kytovci, se nazývá [[cetologie]]. Také český výraz „kytovec“ je odvozen od [[Jan Svatopluk Presl|Preslova]] výrazu „kyt“, tj. „velryba“, z ruského „kit“ z řeckého ''ketos''.<ref>{{Citace monografie
| příjmení = Rejzek
| jméno = Jiří
| titul = Český etymologický slovník
| vydání = 1
| vydavatel = Leda
| rok vydání = 2001
| isbn = 80-85927-85-3
}}</ref>

=== Kytovci v rámci sudokopytníků ===
{{Box-hlava}}Fylogenetické postavení kytovců v rámci sudokopytníků{{klad
|1={{klad
|popisek1=&nbsp;[[sudokopytníci]]&nbsp;
|1={{klad
|1=&nbsp;[[mozolnatci]]&nbsp; [[File:Cladogram of Cetacea within Artiodactyla (Camelus bactrianus).png|50 px]]
|popisek2=&nbsp;Artiofabula&nbsp;
|2=

{{klad
|1=&nbsp;[[štětináči]]&nbsp; [[File:Recherches pour servir à l'histoire naturelle des mammifères (Pl. 80) (white background).jpg|50 px]]
|popisek2=&nbsp;Cetruminantia&nbsp;
|2=

{{klad
|1=&nbsp;[[přežvýkavci]]&nbsp; [[File:Walia ibex illustration white background.png|50 px]]
|popisek2=&nbsp;Whippomorpha&nbsp;
|2=

{{klad
|1=&nbsp;[[hrochovití]]&nbsp;[[File:Hippopotamus-PSF-Oksmith.svg|50 px]]

|2=&nbsp;kytovci&nbsp;[[File:Bowhead-Whale1 (16273933365).jpg|50 px]]


}}

}}

}}

}}
}}
}}
'''Kytovci''' (Cetacea) jsou tradičně považováni za [[řád (biologie)|řád]] z [[Třída (biologie)|třídy]] [[savci|savců]]. Moderní fylogenetická taxonomie je neřadí jako samostatný [[řád (biologie)|řád]], ale jako jednu ze skupin [[Sudokopytníci|sudokopytníků]], konkrétně spadající do fylogenetické skupiny [[Cetancodonta]], do které patřil společný předek kytovců a hrochů. Zahrnují přibližně 80 [[Druh|druhů]] v 10 [[Čeleď|čeledích]]. Řád se dále dělí na dvě skupiny ([[podřád]]y či [[infrařád]]y, podle toho, zda jsou kytovci chápáni jako řád či podřád): [[kosticovci|kosticovce]] (Mysticeti) a [[ozubení|ozubené]] (Odontoceti).
}}{{Box-pata}}Kytovci jsou dnes považováni za jednu z podskupin sudokopytníků (Artiodactyla nebo Cetartidactyla). Jejich nejbližší žijící příbuzní jsou hrochovití. Společně s hrochovitými tvoří skupinu [[Cetancodonta|Whippomorpha]] (syn. Cetancodonta).<ref>{{Citace periodika
| příjmení = Asher
| jméno = Robert
| příjmení2 = Helgen
| jméno2 = Kristofer
| titul = Nomenclature and placental mammal phylogeny
| periodikum = BMC Evolutionary Biology
| datum vydání = 2010
| ročník = 10
| doi = 10.1186/1471-2148-10-102
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865478/#B17
}}</ref> První část názvu skupiny Whippomorpha je složeninou z anglických slov „whale“ a „hippo“, tedy „velryba“ a „hroch“. Do skupiny Cetruminantia pak řadíme Whippomorpha a [[Přežvýkaví|přežvýkavce]] (Ruminantia). Ještě obsáhlejší skupina, do které navíc řadíme štětináče ([[Prasatovití|prasatovité]] a [[Pekariovití|pekariovité]]), byla pojmenována Artiofabula.<ref>{{Citace periodika
| příjmení = Waddel
| jméno = Peter
| spoluautoři = et al.
| titul = Towards resolving the interordinal relationships of placental mammals
| periodikum = Systematic Biology
| datum vydání = 1999
| ročník = 48
| doi = 10.1093/sysbio/48.1.1
| url = https://www.researchgate.net/publication/31473941_Waddell_PJ_Okada_N_Hasegawa_M_Towards_resolving_the_interordinal_relationships_of_placental_mammals_Syst_Biol_48_1-5
}}</ref> Skupině Whippomorpha buď není přiřazena žádná [[taxonomická kategorie]], nebo je vnímána nejčastěji jako [[podřád]]; kytovci jsou pak infrařádem sudokopytníků.<ref name=":33">{{Citace monografie
| příjmení = Groves
| jméno = Colin
| příjmení2 = Grubb
| jméno2 = Peter
| titul = Ungulate Taxonomy
| vydavatel = The Johns Hopkins University Press
| rok vydání = 2011
| isbn = 9781421400938
}}</ref> Kytovčí podskupiny kosticovci a ozubení označujeme jako parvřády (malořády), což je vzácně užívaná taxonomická kategorie, v tomto případě souvisí její užijí s přesunem bývalého samostatného řádu kytovci hluboko dovnitř řádu sudokopytníci. Lze se však setkat i s pojetím, kde kytovci nejsou infrařádem, ale podřádem. Existují publikace, kde jsou na různých místech poněkud inkonzistentně uváděny obě tyto možnosti.<ref>{{Citace monografie
| příjmení = Perrin
| jméno = William
| příjmení2 = Würsig
| jméno2 = Bernd
| příjmení3 = Thewissen
| jméno3 = Johannes
| titul = Encyclopedia of Marine Mammals
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| strany = 235
| isbn = 9780080919935
}}</ref><ref>Perrin, Würsig, Thewissen (2008), s. 1260</ref>


== Význam názvu ==
=== Systém kytovců ===
{{Box-hlava}}Příbuzenské vztahy mezi recentními čeleděmi kytovců{{klad|{{klad
Vědecký název řádu je odvozen od [[latina|latinského]] slova ''cetus'', jehož původní význam byl „velké mořské zvíře“. Tento výraz pochází z [[řečtina|řeckého]] slova ''ketos'', jež označovalo velrybu, jakoukoliv obrovskou rybu či „mořského netvora“. Odnož mořských věd, která zkoumá kytovce, se nazývá [[cetologie]].
|popisek1=&nbsp;kytovci&nbsp;
|1={{klad
|popisek1=&nbsp;[[kosticovci]]&nbsp;
|1={{klad
|1=&nbsp;[[velrybovití]]&nbsp;[[File:Balaena mysticetus NOAA.jpg|80 px]]
|2={{klad
|1=&nbsp;[[Velrybka_malá|velrybkovití]]&nbsp;[[File:Caperea marginata 3.jpg|80 px]]
|2={{klad
|1=&nbsp;[[Plejtvákovec_šedý|plejtvákovcovití]]&nbsp;[[File:Eschrichtius robustus NOAA.jpg|80 px]]
|2=&nbsp;[[plejtvákovití]]&nbsp;[[File:Megaptera novaeangliae NOAA.jpg|80 px]]
}}


}}
== Rozměry ==

Charakteristickou vlastností kytovců jsou velké až obří tělesné rozměry. V současnosti patří mezi kytovce největší žijící živočichové na světě (zejména druh [[plejtvák obrovský]], dosahující délky až 33,6 metru a hmotnosti kolem 180 tun).<ref>https://www.smithsonianmag.com/science-nature/todays-whales-are-so-huge-why-arent-they-huger-180969466/</ref> Největší velryby tak hmotností překonávají i největší dosud známé [[Sauropodi|sauropodní dinosaury]] (ačkoliv ti mohli být s délkou až kolem 40 metrů celkově delší). Žádný dnes známý sauropodní dinosaurus zřejmě nepřesahoval hmotnost 100 metrických tun, zatímco u kytovců ji přesáhly nejméně tři druhy.<ref>https://dinosaurusblog.com/2018/07/09/velryby-proti-sauropodum/</ref>
}}
|popisek2=&nbsp;[[ozubení]]&nbsp;
|2=

{{klad
|1={{klad
|1=&nbsp;[[vorvaňovití]]&nbsp; [[File:Physeter macrocephalus NOAA.jpg|80 px]]
|2=&nbsp;[[kogiovití]]&nbsp;[[File:Kogia sima (transparent background).png|80 px]]


}}

|2=

{{klad
|1=&nbsp;[[Delfínovec_ganžský|indičtí delfínovcovití]]&nbsp;[[File:Platanista_gangetica_(white_background).png|80 px]]
|2=

{{klad
|1=&nbsp;[[vorvaňovcovití]]&nbsp;[[File:Ziphius cavirostris NOAA.jpg|80 px]]

|2={{klad
|1=
{{klad
|1=&nbsp;[[Delfínovec_čínský|čínští delfínovcovití]]&nbsp;[[File:Lipotes vexillifer.png|80 px]]
|2=
{{klad
|1=&nbsp;[[Delfínovec_amazonský|amazonští delfínovcovití]]&nbsp;[[File:Inia geoffrensis (white background).png|80 px]]
|2=&nbsp;[[Delfínovec_laplatský|laplatští delfínovcovití]]&nbsp;[[File:Pontoporia blainvillei (transparent background).png|80 px]]
}}


}}
|2=

{{klad
|1=&nbsp;[[delfínovití]]&nbsp;[[File:Orcinus orca NOAA 2.jpg|80 px]]
|2=
{{klad
|1=&nbsp;[[sviňuchovití]]&nbsp;[[File:Subadult female spectacled porpoise.png|80 px]]
|2=&nbsp;[[narvalovití]]&nbsp;[[File:Delphinapterus leucas NOAA.jpg|80 px]]

}}
}}

}}

}}

}}
}}
}}
}}}}{{Box-pata}}[[Recentní taxon|Recentní]] kytovce lze rozdělit na dvě velmi dobře vymezené skupiny, parvřády ozubení (Odontoceti) a kosticovci (Mysticeti). Uvažujeme-li i fosilní zástupce kytovců, je vhodné zavést monofyletickou skupinu Autoceta čili Neoceti,<ref name=":6" /> do které řadíme oba recentní parvřády, jejich posledního společného předka a všechny jeho potomky.

Kosticovci nikdy nemají zuby, místo nich jsou vybaveni kosticemi, jimiž filtrují z vody drobnou kořist. Mají zachovány obě vnější nozdry, jejich lebka je symetrická. Levá a pravá polovina [[Dolní čelist|spodní čelisti]] vpředu nesrůstá. Není u nich vyvinuta [[hrudní kost]]. Dorůstají velkých až obřích rozměrů (od cca 5 m u [[Velrybka malá|velrybky malé]] po více než 30 m u [[Plejtvák obrovský|plejtváka obrovského]]).

Ozubení většinou zuby mají, mají schopnost echolokace a na temeni hlavy jen jedinou nozdru; jejich lebka je asymetrická. Spodní čelist mají vpředu v oblasti [[Symfýza|symfýzy]] srostlou v jedinou kost. Kost hrudní je u nich vyvinuta. Kromě vorvaně, který je mimořádně velkým druhem (dosahuje délky až přes 20 m), měří od 1,5 ([[sviňucha kalifornská]] a [[delfínovec laplatský]]) do asi 11 m ([[vorvaňovec velký]]).<ref name=":15" />

Mezi kosticovci zaujímají bazální postavení pravé velryby. Moderní fylogenetické studie naznačují, že [[plejtvákovití]] jsou parafyletičtí a že [[Plejtvákovec šedý|plejtvákovec]] by měl být řazen mezi ně.<ref>{{Citace periodika
| příjmení = Zurano
| jméno = Juan
| spoluautoři = et al.
| titul = Cetartiodactyla: updating a time-calibrated molecular phylogeny
| periodikum = Molecular Phylogenetics and Evolution
| datum vydání = 2019
| doi = 10.1016/j.ympev.2018.12.015
}}</ref><ref name=":34">{{Citace periodika
| příjmení = McGowen
| jméno = Michael R
| příjmení2 =
| jméno2 =
| příjmení3 =
| jméno3 =
| spoluautoři = et al.
| titul = Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture
| periodikum = Systematic Biology
| datum vydání = 2020-05-01
| ročník = 69
| číslo = 3
| strany = 479–501
| issn = 1063-5157
| pmid = 31633766
| doi = 10.1093/sysbio/syz068
| jazyk = en
| url = https://academic.oup.com/sysbio/article/69/3/479/5601630
| datum přístupu =
}}</ref> Mezi ozubenými jsou bazální vorvaň a jemu sesterské [[Kogie tuponosá|kogie]] (nadčeleď Physeteroidea). [[Delfínovcovití|Delfínovci]], považovaní dříve za starobylou, ale jednotnou vývojovou linii, která po rozšíření úspěšné čeledi [[Delfínovití|delfínovitých]] nalezla útočiště ve sladkých vodách, jsou [[Polyfyletismus|polyfyletickou]] skupinou. Každý ze čtyř recentních [[Rod (biologie)|rodů]] dnes řadíme do samostatné [[Čeleď|čeledi]], které nemají zavedená česká jména. Evolučně izolovaní „indičtí“ delfínovci rodu ''[[Delfínovec ganžský|Platanista]]'' jsou řazeni do čeledi Platanistidae, zbývající tři čeledi delfínovců tvoří [[Monofyletismus|monofyletickou]] skupinu. „Čínští“ delfínovci rodu ''[[Delfínovec čínský|Lipotes]]'' patří do čeledi Lipotidae, „laplatští“ delfínovci rodu ''[[Delfínovec laplatský|Pontoporia]]'' do čeledi Pontoporiidae a konečně „amazonští“ delfínovci rodu ''[[Delfínovec amazonský|Inia]]'' do čeledi Iniidae. Trojice čeledí [[delfínovití]], [[sviňuchovití]] a [[narvalovití]] tvoří monofyletickou skupinu, nadčeleď Delphinoidea.<ref name=":11" /><ref>{{Citace periodika
| příjmení = Geisler
| jméno = Jonathan
| spoluautoři = et al.
| titul = A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea
| periodikum = BMC Evolutionary Biology
| datum vydání = 2011
| doi = 10.1186/1471-2148-11-112
| url = https://link.springer.com/article/10.1186/1471-2148-11-112
}}</ref>


== Charakteristika ==
== Charakteristika ==
Kytovci jsou ze všech savců nejlépe přizpůsobeni životu ve vodě; jediná další plně akvatická skupina savců jsou [[sirény]]. Kytovci vodu nikdy neopouštějí, pokud se ocitnou na souši, hrozí jim smrt zadušením (na souši váha jejich vlastního těla příliš stlačuje hrudník a znemožňuje jim účinně dýchat) a přehřátím (voda odvádí teplo mnohem lépe než vzduch).<ref>Mazák (1988), str. 12</ref> Díky některým adaptacím na plně vodní způsob života mohou kytovci připomínat ryby (např. tvarem těla nebo končetinami, které mají charakter ploutví) podobně jako někteří další vodní obratlovci (např. vymřelí [[ichtyosauři]]). Nejde však o doklad příbuznosti ryb a kytovců (popř. ichtyosaurů aj.), ale o ukázku [[Konvergence (evoluce)|konvergentní evoluce]]: voda klade na [[Organismus|organismy]], které ji obývají, velmi specifické nároky a tyto organismy pak evolučně spějí k podobným řešením problémů života ve vodě. Přes povrchní podobnost s rybami jsou kytovci [[Placentálové|placentální]] savci, jak dokládá celá řada znaků:<ref name=":15" /><ref>{{Citace monografie
Kytovce je možné na základě vnější podobnosti mylně považovat za velké ryby; kytovci jsou však savci. Jako příslušníci třídy savců i kytovci mají tyto základní znaky:
| titul = Encyclopedia of marine mammals
* jsou teplokrevní
| url = https://www.worldcat.org/oclc/316226747
* dýchají vzduch pomocí plic
| editoři = William F. Perrin, Bernd Würsig and J.G.M. Thewissen
* rodí živá mláďata (ve vodě)
| vydání = 2
* mláďata kojí mlékem (mládě pije z vaku od matky)
| vydavatel = Elsevier/Academic Press
| místo = Amsterdam
| rok vydání = 2009
| počet stran = 1316
| isbn = 978-0-08-091993-5
| isbn2 = 0-08-091993-6
| oclc = 316226747
}}</ref>


*rodí živá mláďata, která jsou před porodem vyživována [[Placenta|placentou]] v těle matky; mláďata jsou [[Kojení|kojena]] mateřským [[Mléko|mlékem]]
Dalším znakem odlišujícím kytovce od [[Ryby|ryb]] je tvar ocasu. Ocas ryby je [[vertikála|vertikální]], zatímco ocas kytovce je [[horizontála|horizontální]].
* dýchají vzduch pomocí [[Plíce|plic]], pro efektivní oddělení okysličené a odkysličené krve mají čtyřdílné [[srdce]] (se dvěma síněmi a dvěma komorami)
*jsou [[Teplokrevnost|teplokrevní]] (homoiotermní a endotermní)
*přes absenci srsti mají někteří zástupci (např. velryby) dobře vyvinuté [[Vibrisy|hmatové chlupy]] (vibrisy)
*jejich [[mozek]] má velmi pokročilou stavbu, zejména dobře je vyvinut [[koncový mozek]] s rýhovanou [[Mozková kůra|mozkovou kůrou]]
*[[kostra]] je sice modifikovaná (zejména kostra končetin), ale stále typicky savčí (např. spodní čelist je tvořena jedinou kostí, ve středním uchu najdeme tři [[sluchové kůstky]], krčních [[Obratel|obratlů]] je 7)
*ačkoli je hlavním orgánem pohybu ocas vybavený ploutví, na rozdíl od ryb, [[Obojživelníci|obojživelníků]] či [[Plazi|plazů]] se [[páteř]] nevlní v horizontální rovině, ale v rovině vertikální (stejně jako u dalších savců – viz způsob pohybu [[Vydry|vyder]] či [[Ploutvonožci|ploutvonožců]]); ocasní ploutev je proto horizontální
Na druhou stranu u nich vodní způsob života vedl k mnoha odlišnostem od většiny ostatních savců; následují nejnápadnější zvláštnosti:<ref name=":15" />


*tělo má vřetenovitý, hydrodynamický tvar kladoucí proudící vodě co nejmenší odpor, není kryto srstí, ale je lysé
Kytovci jsou [[savci]], původně suchozemští, plně [[adaptace|adaptovaní]] na vodní život. Jejich tělo je [[vřetenovitý|vřetenovité]], přední [[končetina|končetiny]] jsou přeměněny v [[ploutev|ploutve]]. Maličké zadní končetiny jsou zakrnělé, nejsou propojeny s páteří a jsou skryty uvnitř těla. Ocas má vodorovné drápky. Kytovci jsou téměř bezsrstí a jsou obaleni silnou vrstvou podkožního tuku.
*chybí vnější ucho ([[Ušní boltec|boltec]] a [[Vnější zvukovod|zvukovod]]) i [[Ušní bubínek|bubínek]]
*nozdry jsou posunuty na vrchol hlavy, u ozubených je navíc zachována jen jedna (levá) nozdra
*přední končetiny jsou přeměněny v ploutve, zadní končetiny jsou redukovány; vytvořeny jsou i další ploutve (ocasní, většinou i hřbetní)
*[[chrup]] (je-li vyvinut) je nerozlišený (je homodontní) a není během života vyměňován (není vyvinut mléčný a trvalý chrup, je tedy monofyodontní)
<gallery widths="250" heights="200">
Soubor:Tursiops truncatus 01.jpg|[[Delfín skákavý]] má jako ostatní kytovci hydrodynamický tvar těla a jeho dýchací cesty vyúsťují na temeni hlavy
Soubor:Humpback whale with her calf.jpg|[[Keporkak]] má dlouhé hrudní ploutve, vyvinutou hřbetní ploutev a mohutnou ocasní ploutev; kytovci rodí živá mláďata
Soubor:The Childrens Museum of Indianapolis - Killer whale skull cast.jpg|Na lebce [[Kosatka dravá|kosatky dravé]] jsou vidět nerozlišené kuželovité zuby
</gallery>


=== Kostra ===
=== Adaptace kytovců na mořský život ===
[[Soubor:Dolphin Skull Bones.jpg|náhled|330x330pixelů|Teleskopická lebka delfína s obarvenými jednotlivými kostmi: 1 - k. čelní, 2 - k. nosní, 3 - k. čichová, 4 - horní čelist, 5 - mezičelist, 6 - k. slzní, 7 - dolní čelist, 8 - naznačená pozice k. lícní (u ozubených kytovců je velmi tenká a na preparované lebce se nezachovala), 9 - k. spánková, 10 - k. klínová, 11 - k. temenní, 12 - k. týlní]]
Po přibližně milion let se předci dnešních kytovců vraceli zpět do moře, protože tam byly příhodnější podmínky k životu (potrava, životní prostor, ...). Během této doby kytovci ztratili vlastnosti potřebné pro suchozemský život a získali nové schopnosti důležité pro život v moři. Zadní končetiny se vytratily, jejich tělo se zúžilo a získalo [[hydrodynamika|hydrodynamický]] tvar, což jim umožnilo pohybovat se ve vodě mnohem rychleji a efektivněji a ze stejného důvodu ztratili srst. Tepelně-izolační vlastnosti chybějící srsti pak nahradili velkou vrstvou podkožního tuku. U některých kytovců může být vrstva tuku i tlustší než 30 cm. Jako součást tohoto evolučního procesu se kosti v předních končetinách spojily a přeměnily v ploutve, které mají za úkol udržovat rovnováhu těla při plavání. [[Čelist]]i jsou protáhlé a buď jsou stejně dlouhé nebo je horní čelist mírně delší. Měkké části horní čelisti ale někdy viditelně přepadávají přes spodní. Na vrcholu hlavy mají umístěn jeden nebo dva dýchací otvory — tzv. vnější [[nozdra|nozdry]], které jsou uzavíratelné svěracími [[svaly]].
Kosti recentních kytovců mají celkově nižší hustotu než kosti suchozemských savců. Povrchová vrstva kompaktní kostní hmoty je ztenčená a uvnitř zčásti nahrazená houbovitou kostí. Kvůli takto zvětšenému vnitřnímu objemu kostí je v kosti vyšší podíl [[Kostní dřeň|kostní dřeně]], jež je z velké části tvořena [[Tuky|tukem]], který má nižší [[Hustota|hustotu]] nežli voda. Díky tomu kytovci při plavání nemusejí vynakládat tolik [[energie]] na to, aby se udrželi při hladině. U vymřelých kytovců, kteří ještě žili obojživelným způsobem života, se naopak setkáváme s tzv. pachyostózou, zesílením a „ztěžknutím“ kostí, což jim umožňovalo snáze se pohybovat po dně mělkých vod.<ref>{{Citace monografie
| příjmení = Maas
| jméno = Mary
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Bones and Teeth, Histology of
}}</ref>


Lebka kytovců je takzvaně teleskopická. Teleskopizace spočívá především v přesunutí nozder na vrchol hlavy, což však vyžaduje výrazné změny v proporcích a vzájemné pozici lebečních kostí. [[Horní čelist]] a [[mezičelist]] jsou výrazně prodloužené, [[Čelní kost|kost čelní]] a [[Nosní kost|kosti nosní]] jsou naopak silně zkrácené, [[Slzní kost|kost slzní]] se dostává mimo kontakt s [[Očnice|očnicí]] atd. Také [[mozkovna]] je kvůli průchodu dýchacích cest shora dolů zkrácená, i tak je však dosti prostorná (je vysoká a široká).<ref name=":16" /><ref name=":18">{{Citace monografie
Kůže je hladká a tenká, je složena ze tří vrstev. Nejsvrchnější je [[Pokožka (živočichové)|epidermis]] (pokožka), která není tlustší než 10&nbsp;mm. Prostřední vrstva [[dermis]] je také poměrně tenká a tvoří ji [[pojivová tkáň]] (podkožní svalstvo) upevňující dermis. Spodní vrstvu [[hypodermis]] tvoří podkožní [[tuková tkáň|tukové vazivo]] a je vlastně souvislou vrstvou [[kůže|podkožního tuku]].
| příjmení = Rommel
| jméno = Sentiel
| příjmení2 = Pabst
| jméno2 = D. Ann
| příjmení3 = McLellan
| jméno3 = William
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Skull Anatomy
}}</ref><ref>{{Citace periodika
| příjmení = Roston
| jméno = Rachel
| příjmení2 = Roth
| jméno2 = V. Louise
| titul = Cetacean Skull Telescoping Brings Evolution of Cranial Sutures into Focus
| periodikum = The Anatomical Record
| datum vydání = 2019
| ročník = 302
| doi = 10.1002/ar.24079
| url = https://anatomypubs.onlinelibrary.wiley.com/doi/full/10.1002/ar.24079
}}</ref> U ozubených je lebka zřetelně asymetrická, především (ale nejen) v oblasti vyústění nozder. Při pohledu shora je lehce zakřivená k levé straně.<ref name=":16" /> Asymetrie bývá pokládána za adaptaci pro zvýšení přesnosti při určování směrů, z nichž přichází zvuky, popř. i za adaptaci pro zlepšení parametrů generovaného echolokačního signálu.<ref>{{Citace periodika
| příjmení = Fahlke
| jméno = Julia
| spoluautoři = et al.
| titul = Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water
| periodikum = Proceedings of the National Academy of Sciences
| datum vydání = 2011
| ročník = 108
| doi = 10.1073/pnas.1108927108
| url = https://www.pnas.org/content/108/35/14545
}}</ref><ref>{{Citace periodika
| příjmení = Coombs
| jméno = Ellen
| spoluautoři = et al.
| titul = Wonky whales: the evolution of cranial asymmetry in cetaceans
| periodikum = BMC Biology
| datum vydání = 2020
| ročník = 18
| doi = 10.1186/s12915-020-00805-4
| url = https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-00805-4
}}</ref>


Lebka kytovců je relativně široká, má výrazně protažené [[Čelist|čelisti]] (čenich, rostrum), očnice jsou umístěny po stranách, relativně nízko. Na spodní části lebky jsou umístěna sluchová pouzdra čili sluchové výdutě chránící vnitřní ucho, oproti ostatním savcům jsou jen relativně volně spojena s ostatními kostmi lebky, což přispívá k dobrému slyšení pod vodou, zejména k určování směru, ze kterého zvuk přichází (díky eliminaci rušivých [[Chvění|vibrací]] přenášených lebkou). Mnohé kosti lebky obsahují dutiny vyplněné vzduchem nebo tukem.<ref name=":16" /><ref name=":18" />
[[Lebka]] je široká, s prostornými [[dutina]]mi v jednotlivých kostech. [[Mozkovna]] je objemná. Mozek je nápadný výraznou [[diferenciace|diferenciací]] jednotlivých částí a jeho povrch je zbrázděn velkým množstvím rýh a záhybů, (tj. má vysoký stupeň [[gyrifikace]]). Anatomická složitost mozku kytovců je srovnatelná s [[vyšší primáti|vyššími primáty]].

Vzhledem k silné redukci zadní končetiny, jejíž pletenec ([[Pánevní kost|pánevní kosti]]) již není napojen na páteř, nesrůstají u kytovců obratle v křížové oblasti v [[Křížová kost|křížovou kost]], ale zůstávají volné a jsou považovány za bederní obratle. Pravé křížové obratle tedy chybí. Páteř kytovců je většinou složena z většího počtu obratlů než je u savců typické, zmnoženy jsou hlavně ocasní a bederní obratle. Např. [[delfín obecný]] má 73 obratlů, a to 7 krčních (cervikálních), 13 hrudních (thorakálních), 22 bederních (lumbálních), žádné křížové (sakrální) a 31 ocasních (kaudálních), což lze vyjádřit zkráceným zápisem C7:T13:L22:S0:Ca31.<ref>{{Citace periodika
| příjmení = Long
| jméno = John
| spoluautoři = et al.
| titul = Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis
| periodikum = Journal of Experimental Biology
| datum vydání = 1997
| ročník = 200
| číslo = 1
| doi = 10.1242/jeb.200.1.65
| url = https://journals.biologists.com/jeb/article/200/1/65/7328/Locomotor-design-of-dolphin-vertebral-columns
}}</ref> Delfín skákavý má 60 obratlů (C7:T13:L14:S0:Ca26), [[velryba černá]] 58 (C7:T14:L11:S0:Ca26).<ref name=":19">{{Citace monografie
| příjmení = Rommel
| jméno = Sentiel
| příjmení2 = Reynolds
| jméno2 = John
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Skeleton, Postcranial
}}</ref> Nízký počet obratlů (41) má [[Delfínovec amazonský|inie amazonská]].<ref name=":16" /> Obratle zasahují až na samý konec těla (na rozdíl např. od [[Kapustňák|kapustňáků]], kde páteř nedosahuje ke konci ocasní ploutve).<ref name=":19" /><gallery widths="250" heights="200">
Soubor:Eubalaena glacialis (North Atlantic right whale) 1 (30986325841).jpg|Lebka velryby černé
Soubor:Lagenorhynchus albirostris - skeleton.jpg|Kostra [[Plískavice bělonosá|plískavice bělonosé]]
Soubor:Zoologisches Museum Kiel Pottwal-Skelett.jpg|Kostra vorvaně
</gallery>

=== Ploutve, končetiny ===
Hlavním orgánem pohybu je u kytovců ocas vybavený horizontální ocasní ploutví. Na rozdíl od ryb však ocasní ploutev kytovců není vyztužena kostěnými paprsky, ale [[Vazivo|vazivem]]. Podobně i hřbetní ploutev, kterou nacházíme u většiny kytovců a která stabilizuje tělo při plavání, je kožní duplikaturou vyztuženou vazivem. Také přední končetiny jsou přeměněny v ploutve. Uplatňují se zejména při stabilizaci a manévrování. [[Pažní kost]] a kosti [[předloktí]], jakož i [[Kostra zápěstí|zápěstní]] a [[Záprstí|záprstní]] kůstky jsou v nich zkrácené, [[Loket|loketní]] i [[Zápěstí|zápěstní]] kloub je nefunkční, kostra prstů tvořící základ hlavní části ploutve je ale vyvinutá dobře, články prostředních prstů mohou jsou zmnoženy (tento jev se nazývá polyfalangie), první a pátý prst mívá naopak počet článků snížený, někdy až na jediný.

Zadní končetiny jsou zakrnělé, jejich jediným pozůstatkem jsou zbytky pánevních kostí a [[Stehenní kost|stehenní kosti]] zarostlé ve svalovině břicha. Na povrchu těla nejsou zadní končetiny patrné, velmi vzácně mohou být u některých jedinců vyvinuty v podobě malých prstovitých [[Atavismus|atavistických]] výrůstků.<ref name=":16" /> <gallery widths="200">
Soubor:Whale fluke. (9112595870).jpg|Ocas vorvaně obrovského s horizontální ocasní ploutví
Soubor:Pseudorca crassidens flipper bones - Burke Museum - 01.jpg|Kostra přední končetiny [[Kosatka černá|kosatky černé]]; články druhého a třetího prstu jsou pomnožené
Soubor:Recent memoirs on the Cetacea pl. 2.jpg|Kresba kostry [[Velryba grónská|velryby grónské]] s detailním vyobrazením lebky (zadní pohled), rudimentární kostry zadní končetiny (na obrázku označeno jako „fig. 4“) a přední části [[Hrudní koš|hrudního koše]]
Soubor:Killer Whale (Orcinus orca) (16686617207).jpg|Vydechující kosatka dravá s dobře viditelnou hřbetní ploutví
</gallery>
=== Kůže ===
[[Soubor:Beluga blubber.jpg|náhled|Sušící se kůže [[Běluha severní|běluhy]] s vrstvou podkožního tuku]]
[[Soubor:Bowhead Whale flensing, Barrow, Alaska, October 2017.jpg|náhled|Stahování velrybí kůže se silnou vrstvou podkožního tuku ]]
Kromě hydrodynamického tvaru těla přispívá k rychlému a efektivnímu pohybu kytovců ve vodě také stavba [[kůže]]. Kůže je bez srsti, její povrch je velice hladký a [[hydrofobnost|hydrofobní]], nesmáčivý. Dostane-li se ven z vody, voda z povrchu těla ihned steče a kůže je téměř suchá. Taková vlastnost kůže snižuje na minimum tření ve vodním prostředí. Dále je kůže měkká, velice pružná a během plavání se svým povrchem přizpůsobuje proudění okolní vody, tím na minimum eliminuje vznik brzdících [[turbulence|turbulencí]], dokáže svým vlněním ovládaným podkožním svalstvem přeměnit vzniklé [[turbulentní proudění]] na [[laminární proudění|laminární]]. Tato schopnost je zvláště významná při plavání ve skupinách.<ref name=":28">Mazák (1988), kapitola Jak kytovci plavou a jak se potápějí a dýchají</ref>

Kůže je složena ze tří vrstev, jak je u obratlovců obvyklé. Nejsvrchnější je poměrně silná [[Pokožka (živočichové)|epidermis]] (pokožka), která u velkých druhů dosahuje tloušťky až 1 cm. Prostřední vrstva, [[dermis]], je tvořena vazivem. Díky zvrásnění, které zasahuje hluboko do epidermis, fixuje tato vrstva pevně pokožku.<ref name=":16">Mazák (1988), kapitola Stavba těla a její zvláštnosti, rozmanitost kytovců</ref> Spodní vrstvu, [[hypodermis]], tvoří podkožní [[tuková tkáň|tukové vazivo]], u kytovců modifikované v souvislou vrstvu [[kůže|podkožního tuku]] s relativně tuhou konzistencí způsobenou vyšším podílem [[Kolagen|kolagenu]] a [[Elastin|elastinu]], než je u savců běžné.<ref name=":17">{{Citace monografie
| příjmení = Iverson
| jméno = Sara
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Blubber
}}</ref> Díky svým tepelně-izolačním vlastnostem slouží tuková vrstva jako náhražka chybějící srsti. Tuková izolace a další přizpůsobení, jako je protiproudová výměna tepla v cévách (chladná krev vracející se z kůže do těla se ohřívá paralelně vedenou tepennou krví tekoucí opačným směrem) umožňují některým kytovcům obývat i ledové [[Arktida|arktické]] a [[Antarktida|antarktické]] vody. U největších kytovců může být vrstva tuku tlustá několik decimetrů (u plejtváků asi 30 cm, u velryb až 50 cm), u menších zástupců několik cm. Tloušťka tukové vrstvy se během života mění, někdy sezónně, zejména v závislosti na dostupnosti potravy. Výrazný úbytek podkožního tuku je spojen také s kojením mláďat. Kromě toho, že funguje jako tepelná izolace a energetická zásoba, hraje tuková vrstva důležitou roli i při formování tvaru těla – např. v zadní části těla je silnější, než by odpovídalo termoregulačním potřebám, protože je tak zachován hydrodynamický vřetenovitý tvar těla snižující odpor vody.<ref name=":17" />

=== Dýchací soustava ===
[[Soubor:Anim1122 - Flickr - NOAA Photo Library.jpg|náhled|Výdechová fontána pravých velryb má charakter písmene V]]
[[Soubor:Sperm whale blowhole Vincze.jpg|náhled|Pohled přes hřbet vorvaně na jeho plně otevřenou nozdru umístěnou zřetelně asymetricky na levé straně]]
Tak jako pro ostatní savce je i pro kytovce jediným zdrojem kyslíku vzduch. Kvůli dýchání jsou tedy nuceni pravidelně navštěvovat hladinu, i když většina jejich ostatních aktivit (shánění potravy, rozmnožování atd.) se může odehrávat hlouběji. Aby byla potřeba vracet se k hladině kvůli nádechu minimalizována, vyvinuly se u kytovců adaptace zvyšující efektivitu dýchání. Samotná relativní kapacita plic (plicní objem vztažený na hmotnost těla) není u kytovců nijak velká. Kapacita [[plíce|plic]] u kytovců nepotápějících se do velkých hloubek je okolo 7 litrů na 100 kg hmotnosti. (Pro savce je typická hodnota asi 5 až 6 l/kg.) Naopak u druhů dosahujících největších hloubek je kapacita mnohem nižší, asi 2,5 až 3 litry na stejnou hmotnost. Menší objem plic přispívá k vyšší hustotě těla a proto snazšímu sestupu a také omezuje riziko intenzivního rozpouštění plynů v krvi za vysokého [[Tlak|tlaku]]. <ref name=":28" />

Takzvaný [[dechový objem]] (tedy objem plynu vyměněného při běžném nádechu) dosahuje u suchozemských savců asi 10–15 % celkové kapacity plic, např. u člověka se běžně udává hodnota asi 0,5 l.<ref>{{Citace monografie
| příjmení = Marieb
| jméno = Elaine
| příjmení2 = Hoehn
| jméno2 = Katja
| titul = Human Anatomy & Physiology
| vydání = 9
| vydavatel = Pearson
| rok vydání = 2013
| isbn = 978-0-321-74326-8
}}</ref> U kytovců je dechový objem typicky přes 75 % celkové kapacity plic. Také [[vitální kapacita]] (maximální objem vyměněného plynu) je u kytovců větší (přes 90 % celkové kapacity) než u suchozemských savců (okolo 75 % celkové kapacity). Důvodem je především schopnost vytlačit z plic mnohem víc vzduchu při výdechu, než je u savců obvyklé. Hlavní podíl na tom má vyšší elasticita a poddajnost plic a hrudníku (chrupavčitá část [[Žebro|žeber]] je rozsáhlejší, u kosticovců hrudní kost zcela chybí) a také schopnost jejich plic za vysokého okolního tlaku kolabovat (vytěsnit prakticky všechen vzduch z [[Plicní sklípek|plicních sklípků]]) bez závažných následků pro organismus. Pro hluboko se nořící kytovce je naopak důležité, aby v plicích nezůstával silně stlačený vzduch, protože za vysokého tlaku by se v jejich krvi rozpouštělo velké množství plynů včetně [[Dusík|dusíku]], který by při vynořování z krve opět vytěkával a působil tzv. [[Dekompresní nemoc|kesonovou nemoc]]. [[Dýchací cesty]] jsou na rozdíl od plic vyztuženy [[Chrupavka|chrupavkou]] a opatřeny svalovinou, které je udržují průchozí. Právě v dýchacích cestách se může shromažďovat vzduch vytlačený z kolabujících plic.

Další důvod pro zpevnění stěn dýchacích cest je možnost udržet dýchací cesty plně otevřené při velmi prudkém výdechu a nádechu kytovců. Jak bylo řečeno, kytovci při jenom dechovém cyklu (výdechu a nádechu) vyměňují velké objemy plynu, přesto celý cyklus trvá krátce (u delfína skákavého výměna asi 10 l vzduchu trvá jen asi 1/3 sekundy). Rychlost proudění vydechovaného vzduchu může v dýchacích cestách dosahovat hodnot až 200 m/s, při nádechu je asi čtvrtinová. Kytovci většinou začnou vydechovat těsně pod hladinou, prudkým výdechem se zbaví vody v [[Horní cesty dýchací|horních cestách dýchacích]] a v okolí nozder, přičemž vyprodukují typické obláčky až fontány kapiček, v chladných oblastech se na výdechové fontáně podílí i srážející se vodní pára. Tyto výdechové fontány jsou pro jednotlivé druhy typické tvarem, výškou anebo úhlem. Zkušený velrybář nebo pozorovatel je schopen podle výdechové fontány určit na dálku druh kytovce. Pod vodou kytovci dech zadržují, když se potopí, svaly kolem nozder se stáhnou a uzavřou dýchací otvory. Kytovci mají díky teleskopické lebce nozdry na vrcholu hlavy, což jim dává možnost rychleji vydechnout a nadechnout čerstvý vzduch.<ref>{{Citace monografie
| příjmení = Wartzok
| jméno = Douglas
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Breathing
}}</ref><ref name=":15" />

=== Cévní soustava ===
[[Soubor:Heart of a Minke whale (Balaenoptera acutorostrata).jpg|náhled|Srdce [[Plejtvák malý|plejtváka malého]]]]
Srdce kytovců svou stavbou nebo poměrem své hmotnosti ku hmotnosti těla nevybočuje z typicky savčího rámce. Tvoří asi 0,3 % až něco málo přes 1 % hmotnosti těla (u větších druhů méně).<ref name=":28" /><ref name=":29">{{Citace monografie
| příjmení = Ponganis
| jméno = Paul
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Circulatory System
}}</ref> Srdeční rytmus se během ponorů, zejména těch hlubokých, zpomaluje. Např. u běluhy z asi 30 tepů za minutu během dýchání na asi polovinu při ponoření. U velkých kytovců je frekvence i při dýchání na hladině celkově nízká (asi 20 úderů za minutu), po ponoru klesá pod 10 úderů za minutu.<ref name=":28" />

Celkový objem [[Céva|cév]] (a tedy i [[Krev|krve]]) je u kytovců zvětšen asi na dvoj- až trojnásobek hodnot běžných u suchozemských zvířat. U aktivních a na dlouhou dobu se potápějících kytovců může být objem krve až kolem 1/4 l na kg hmotnosti (u člověka je to asi 70 ml). V některých orgánech, jako jsou [[játra]] nebo [[slezina]], se nacházejí rozsáhlé žilní splavy, objemná je i [[dolní dutá žíla]] aj. [[Aorta]] je pružná, roztažitelná a je schopná pojmout při [[Systola|systole]] velké množství krve, která je z ní díky její flexibilitě i během srdeční [[Diastola|diastoly]] průběžně vytlačována do [[Věnčitá tepna|koronárních tepen]] i dále do těla. Dalším nápadným rysem cévního řečiště kytovců jsou tzv. ''retia mirabilia'' ([[Jednotné číslo|sg]]. „''rete mirabile“''), spletité svazky tepének a žilek nacházející se v oblasti stěny hrudního koše pod obratli a mezi žebry. Pojmou velké množství krve a zřejmě regulují tok krve do mozku.<ref name=":28" /><ref name=":29" />

Významnou adaptací na dlouhé zadržování dechu je nejen zvýšený krevní objem, ale také vyšší koncentrace pigmentů vázajících kyslík: [[Hemoglobin|hemoglobinu]] v krvi a především [[Myoglobin|myoglobinu]] přímo ve svalech. Výsledná zásoba kyslíku v prokysličeném těle kytovce je pak v přepočtu na kg hmotnosti asi 2–4 krát vyšší než u člověka. Ve svalech kytovců jsou uloženy i [[Glykogen|glykogenové]] zásoby a jejich svaly dobře snášejí i vysoké hladiny [[Kyselina mléčná|kyseliny mléčné]], která je odpadním produktem [[Anaerobní|anaerobního]] [[Metabolismus|metabolismu]], takže svaly mohou po čas ponoru fungovat jen s minimálním průtokem krve. Další úspora kyslíku a energie spočívá ve snížení aktivity vnitřních orgánů během delších ponorů.<ref name=":30">{{Citace monografie
| příjmení = Kooyman
| jméno = Gerald
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Diving Physiology
}}</ref>


=== Plavání a potápění ===
=== Plavání a potápění ===
Výše zmíněná přizpůsobení [[Pohybová soustava|pohybové]], [[Cévní soustava|cévní]] a [[Dýchací soustava|dýchací]] soustavy i kůže jsou podřízena potřebě kytovců dobře a s co nejmenší vynaloženou energií plavat a potápět se na dostatečně dlouhou dobu. Někteří plejtváci dokáží v případě potřeby plavat rychlostí až 65 km/h, kosatky až 55 km/h, delfíni až 50 km/h a velryby jen málo přes 10km/h. Velryby se sice obvykle potápějí do hloubek 10 až 50 metrů na dobu ne delší než 10 minut, ale jsou schopny vydržet pod hladinou až hodinu. Plejtváci se potápějí i do 400 metrů na dobu 30 až 60 minut a vorvaň a vorvaňovci sestupují do hloubky až 2 000 metrů na dobu až 60 až 80 minut (k dosažení této hloubky potřebuje vorvaň 20 až 25 minut).<ref name=":28" /><ref name=":30" /> Rekordmanem v potápění je mezi kytovci i mezi savci [[vorvaňovec zobatý]], u něhož byl doložen ponor do hloubky 2992 m na dobu přes 137 minut.<ref>{{Citace periodika
Kytovci (zvláště ti z podřádu ozubených) musí při lovu plavat větší rychlostí než lovené ryby, pro které je vodní prostředí vlastní od samého počátku. Základním požadavkem dobrých plaveckých vlastností je hydrodynamický tvar těla, ke kterému se kytovci dopracovali. Vlastním pohonným aparátem je pouze ocas, ploutve přední i hřbetní slouží jen pro stabilizaci. Mimořádné plavecké vlastnosti kytovců a nízká vynaložená energie jsou způsobeny vlastnostmi kůže a schopnosti je měnit.
| příjmení = Schorr
Povrch kůže je dokonale hladký a [[hydrofobnost|hydrofobní]], odpuzuje vodu. Dostane-li se ven z vody, voda z povrchu těla ihned steče a kůže je téměř suchá. Taková vlastnost kůže snižuje na minimum tření ve vodním prostředí. Dále je kůže měkká, velice pružná a během plavání se svým povrchem přizpůsobuje proudění okolní vody, tím na minimum eliminuje vznik brzdící [[turbulence]], dokáže svým vlněním ovládaným podkožním svalstvem přeměnit vzniklé [[turbulentní proudění]] na [[laminární proudění|laminární]]. Tato schopnost je zvláště významná při plavání ve skupinách.
| jméno = Gregory
| spoluautoři = et al.
| titul = First Long-Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius cavirostris) Reveal Record-Breaking Dives
| periodikum = PLOS ONE
| datum vydání = 2014
| doi = 10.1371/journal.pone.0092633
| url = https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092633
}}</ref>
=== Nervová soustava, smysly a echolokace ===
[[Soubor:Cerveaux hommes rhinocéros et dauphin.JPG|náhled|Mozek delfína skákavého (vpravo) ve srovnání s mozkem člověka (vlevo) a [[Nosorožcovití|nosorožce]] (uprostřed) ]]

==== Mozek ====
Kytovci vykazují velmi vyspělé chování a vysokou inteligenci, což souvisí s pokročilou stavbou mozku i s jeho velkými rozměry. Anatomická i [[Histologie|histologická]] složitost mozku kytovců je srovnatelná s [[vyšší primáti|vyššími primáty]]. Mozek je nápadný výraznou [[diferenciace|diferenciací]] jednotlivých částí, přičemž koncový mozek je nejen nápadně velký, ale jeho povrch je také zbrázděn velkým množstvím rýh a záhybů, tj. má vysoký stupeň [[gyrifikace]]. Zvláště u delfínovitých je gyrifikace mozku velice výrazná, zbrázdění šedé kůry je dokonce hlubší a členitější než u člověka.<ref>{{Citace monografie
| příjmení = Oelschläger
| jméno = Helmut
| příjmení2 = Oelschläger
| jméno2 = Jutta
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Brain
}}</ref> Také [[mozeček]] je dobře vyvinutou částí kytovčího mozku. Mozek vorvaně je se svými skoro 10 kg vůbec největším mozkem v živočišné říši, mozky velkých plejtváků (p. obrovského a [[Plejtvák myšok|myšoka]]) jsou jen o málo menší (6–8,5 kg).<ref name=":16" /> Relativní hmotnost mozku u velkých kytovců, tedy poměr hmotnosti mozku a celého těla, je však naopak velmi nízká (např. hmotnost mozku vorvaně odpovídá jen asi 0,022 % jeho celkové hmotnosti). U menších druhů je tento poměr mnohem vyšší (např. u delfína skákavého je to již 0,87 %). Lepším vyjádřením velikosti mozku je ale tzv. encefalizační kvocient (EQ) vycházející ze srovnání mnoha druhů savců a vyjadřující, kolikrát je mozek daného druhu větší, než je očekávaná velikost mozku pro savce dané velikosti. U člověka je EQ asi 7,5–8, u šimpanze do 2,5. Mezi kytovci dosahují nejvyšších hodnot EQ zástupci delfínovitých – řada druhů delfínů a plískavic má EQ mezi 4 a 4,5.<ref>{{Citace periodika
| příjmení = Roth
| jméno = Gerhard
| příjmení2 = Dicke
| jméno2 = Ursula
| titul = Evolution of the brain and intelligence
| periodikum = TRENDS in Cognitive Sciences
| datum vydání = 2005
| ročník = 9
| doi = 10.1016/j.tics.2005.03.005
}}</ref><ref>{{Citace monografie
| příjmení = Marino
| jméno = Lori
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Brain Size Evolution
}}</ref>

==== Zrak ====
[[Soubor:Platanista gangetica noaa.jpg|náhled|Delfínovci žijící v kalných řekách mají nejmenší oči mezi kytovci. Na obrázku je d. ganžský, který ve špatně vyvinutém oku dokonce postrádá čočku. ]]
Zrak hraje v životě kytovců důležitou roli a je využíván zejména na blízko při lovu, rozpoznávání jedinců v societě, při vyhýbání se překážkám atd. U echolokujících kytovců doplňuje echolokaci a nad vodou (např. při výskocích, ale také v delfináriích při výcviku nebo při krmení házenými rybami) ji plně nahrazuje.<ref name=":22">{{Citace monografie
| příjmení = Mass
| jméno = Alla
| příjmení2 = Supin
| jméno2 = Alexander
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Vision
}}</ref> Ostrostí vidění jsou kytovci (přinejmenším delfíni, na nichž se provádí velká většina [[Biologická psychologie|behaviorálních]] pokusů na kytovcích) srovnatelní s jinými savci (řekněme [[Šelmy|šelmami]] jako jsou [[Kočka domácí|kočky]] a [[Pes domácí|psi]]).<ref name=":23" /> V [[Sítnice|sítnici]] delfínů jsou [[Tyčinka (oko)|tyčinky]] a jediný druh [[Čípek (oko)|čípků]] (ty však tvoří jen maximálně 2 % světločivných buněk), maximum senzitivity je u obou typů [[Fotoreceptor|fotoreceptorů]] posunuto spíše k modrému konci [[Elektromagnetické spektrum|světelného spektra]] ([[vlnová délka]] nejúčinněji registrovaného světla je 488 nm u tyčinek, 525 nm u čípků), což je evidentně adaptace na vidění ve vodě, kde je červená složka rychle pohlcována. Zda jsou delfíni schopni vnímat barvy díky odlišným absorbčním maximům obou typů buněk, není jasné. Pokud ano, tak jen ve značně omezeném rozsahu.<ref name=":22" /> Relativně malé oči mají kytovci usazeny po stranách hlavy. U delfínů se zorná pole obou očí vpředu a dole mírně překrývají a mohou tak díky binokulárnímu vidění poskytovat lepší trojrozměrné vidění. V oblasti [[Chiasma opticum|křížení optických nervů]] se ale na rozdíl od lidí vyskytují pouze křížící se nervová vlákna (taková, která vstupují do [[Mozková hemisféra|hemisféry]] na druhé straně, než je oko, z něhož vycházejí). Nekřížící se vlákna, která usnadňují vyhodnocení trojrozměrného obrazu, zde chybějí. Kytovci mají na sítnici dvě oblasti s vysokou koncentrací světločivných buněk (tedy oblasti odpovídající [[Žlutá skvrna|žluté skvrně]]). Jsou lokalizovány tak, že nejostřeji jsou vnímány objekty před hlavou zvířete a objekty po stranách.<ref name=":22" />

Oko kytovců se vyznačuje zesílenou [[Rohovka|rohovkou]] a [[Bělima|bělimou]] a mohutnými [[Okohybné svaly|okohybnými svaly]], za okem je v očnici množství cév. Oko je těmito strukturami chráněno jak před mechanickým poškozením, tak před nízkými teplotami. [[Oční koule|Oční bulva]] kytovců není kulatá, ale v oblasti rohovky a vnějšího povrchu vůbec je silně zploštělá. Rohovka hraje pod vodou jen malou roli v lomu světla, hlavním světlolomným orgánem je tak [[Čočka (oko)|čočka]], která je u kytovců podobně jako u ryb prakticky kulovitá, opticky mnohem mohutnější než čočka suchozemských obratlovců. Svaly [[Řasnaté tělísko|řasnatého tělíska]] jsou u kytovců zakrnělé a oko tak nemůže [[Akomodace|akomodovat]] pomocí změny tvaru čočky. Na akomodaci se podílí deformace celé oční bulvy pomocí okohybných svalů, zejména retraktoru (zatahovače) oka, který u suchozemských savců nenacházíme. [[Zornice]] oka je přizpůsobena náhlým změnám intenzity světla během plavání při hladině a ponorů. Z horní části [[Duhovka|duhovky]] vyčnívá do prostoru zornice tzv. operkulum, které může být v temnotě zcela vytaženo nahoru a zornice je pak kruhová. Na světle se operkulum stahuje dolů a zornice pak má charakter úzké štěrbiny ve tvaru písmene U. Citlivost oka v temných podmínkách je ještě zvýšena odrazivou vrstvou (''[[tapetum lucidum]]'') za sítnicí. Přestože je čočka kytovců velmi světlolomná, nechová se na vzduchu oko kytovců jako silně [[Krátkozrakost|krátkozraké]], jak by se dalo čekat. Důvodem je relativně plochá rohovka, která jen málo přispívá k lomu světla na rozhraní vzduch / voda. Za pomoci tažení očních bulev okohybnými svaly mírně vpřed, což vede ke snížení nitroočního tlaku a následnému dodatečnému oploštění rohovky a posunu čočky vzad, mohou kytovci zaostřit oko i nad vodou. K ostrosti vzdušného vidění přispívá i silné zúžení štěrbiny zornice v dobrých světelných podmínkách. Oči delfínů se mohou pohybovat (a běžně pohybují) nezávisle na sobě. Také zornicový reflex (stahování operkula) je u obou očí víceméně nezávislý a delfíni také oči běžně na delší dobu střídavě zavírají (jak při pohybu, tak ve spánku).<ref name=":22" />

==== Sluch a echolokace ====
[[Soubor:Delfinekko.gif|náhled|Animace produkovaných (zeleně) a přijímaných (červeně) zvukových vln při echolokaci]]
[[Soubor:Delphinapterus leucas head 1.jpg|náhled|Běluhy mají na hlavě dobře zřetelný meloun, tukový polštář v přední horní části hlavy napomáhající se směrováním echolokačních ultrazvuků dopředu ]]
[[Soubor:DelfinHlavaRez.png|náhled|Na tomto sagitálním řezu hlavou delfína je dobře zřetelný meloun a další měkké tkáně]]
Kytovci mají vynikající sluch, přestože postrádají ušní boltce a jejich zvukovody jsou silně zúžené a zčásti neprůchodné (resp. u kosticovců utěsněné [[Ušní maz|mazovou]] zátkou). Zvuky u nich slouží vnitrodruhové komunikaci, ať už jde o sténání, hvízdaní, mlaskání nebo složité 'zpívání' [[keporkak]]a.<ref name=":15" /> U ozubených se navíc vyvinula schopnost echolokace, která umožňuje získat analýzou odražených [[Zvuk|zvukových vln]] přehled o okolí. Vzhledem k tomu, že pro echolokaci jsou využívány zvukové vlny o krátkých vlnových délkách, které poskytují lepší [[rozlišovací schopnost]], vnímají ozubení kytovci velmi dobře [[vysokofrekvenční]] zvuky. Nejcitlivější jsou ke zvukům v rozsahu frekvencí asi 40–80 [[Hertz|kHz]], ale vnímají zvuky o frekvencích až přes 150 kHz.<ref name=":24" />


Střední a vnitřní ucho kytovců je uloženo v kostěném pouzdře na bázi lebky. Tato sluchová pouzdra jsou v relativně volném kontaktu s většinou ostatních lebečních kostí, navíc jsou kosti v jejich sousedství silně pneumatizovány; tyto vzduchem vyplněné dutiny přispívají ke zvukové izolaci ušního aparátu od zbytku lebky. Způsob, jakým je zvuk veden do oblasti ucha, je lépe pochopen u ozubených. Bubínek, jenž díky své elasticitě napomáhá vyrovnávání tlaku ve středouší, se u nich již nepodílí na přenosu zvukových vibrací na sluchové kůstky. [[Kladívko (anatomie)|Kladívko]] je místo toho rozkmitáváno plochou a tenkou, ale pevnou vnější stěnou [[Spánková kost|kosti bubínkové]]. Na ni jsou zvukové vlny přenášeny zejména dolní čelistí, která je z velké části vyplněna tukem efektivně přenášejícím zvuk. Sluchové kůstky pak rozechvívají [[oválné okénko]] vnitřního ucha a tekutinu v [[Hlemýžď (ucho)|hlemýždi]] podobně jako u jiných savců.<ref>{{Citace monografie
Někteří plejtváci dokáži plavat až rychlostí 65 km/h, kosatky až 55 km/h, delfíni až 50 km/h a velryby jen 10km/h, delfíni jsou schopni v přírodě vyskočit až do výše 5&nbsp;m.
| příjmení = Nummela
| jméno = Sirpa
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Hearing
}}</ref> U kosticovců nevykazuje spodní čelist adaptace na vedení zvuku a jejich ucho je přizpůsobeno slyšení komunikačních zvuků o nižších frekvencích (desítky Hz až cca 20–30 kHz).<ref>{{Citace monografie
| příjmení = National Research Council (US) Committee on Potential Impacts of Ambient Noise in the Ocean on Marine Mammals.
| titul = Ocean Noise and Marine Mammals
| url = https://www.ncbi.nlm.nih.gov/books/NBK221255/
| vydavatel = National Academies Press
| místo = Washington (DC)
| rok vydání = 2003
| kapitola = Effects of Noise on Marine Mammals
}}</ref>


Ozubení kytovci využívají podobně jako např. [[netopýři]] tzv. echolokaci ([[sonar]]) – vydávají vysokofrekvenční zvuky, naslouchají ozvěnám odraženým od kořisti, překážek atd. a získávají tak informaci o jejich poloze. Ve vodě provozovaná echolokace je někdy označována jako hydrolokace. Schopnost echolokace byla u ozubených kytovců předpokládána od konce 40. let 20. století, množství nepřímých dokladů bylo publikováno během 50. let (vyhýbání se špatně viditelným překážkám z [[Polymethylmethakrylát|plexiskla]], [[Nylon|nylonu]] apod., snadná orientace v kalné vodě nebo za tmy i přímá detekce ultrazvuků vydávaných kytovci atd.). Experimenty s delfíny se zakrytýma očima provedené r. 1961 doprovázené snímáním ultrazvuků definitivně potvrdily využití echolokace.<ref>{{Citace periodika
Velryby se potápějí do hloubek 10 až 150 metrů na dobu 10 až 60 minut, plejtváci se potápějí i do 400 metrů na dobu 30 až 60 minut a vorvaň sestupuje do hloubky až 2 000 metru na dobu až 60 až 80 minut (k dosažení této hloubky potřebuje 20 až 25 minut). Kapacita [[plíce|plic]] u kytovců nepotápějících se do velkých hloubek je okolo 7 litrů na 100 kg hmotnosti. Naopak u druhů dosahujících největších hloubek je kapacita mnohem nižší, asi 2,5 až 3 litry na stejnou hmotnost. Hmotnost [[srdce]] přitom mají úměrnou své hmotnost, srovnatelnou se suchozemskými savci. Kytovci si zásoby kyslíku pro ponor totiž dělají především tím, že před ponořením bohatě prokysličí svou krev a tělesné tkáně. I k tomu jsou přizpůsobeni a mají oproti ostatním savcům více [[hemoglobin]]u i [[myoglobin]]u.
| příjmení = Norris
| jméno = Kenneth
| spoluautoři = et al.
| titul = An Experimental Demonstration of Echo-Location Behavior in the Porpoise, Tursiops truncatus (Montagu)
| periodikum = Biological Bulletin
| datum vydání = 1961
| ročník = 120
| doi = 10.2307/1539374
}}</ref><ref>{{Citace monografie
| příjmení = Au
| jméno = Whitlow
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Echolocation
}}</ref>


Ultrazvuky („cvakání“) jsou generovány v měkkých tkáních mezi lebkou a vnější nozdrou (čili vznikají ''de facto'' v nose, byť silně modifikovaném). Vlastním zvukovým orgánem jsou tzv. zvukové pysky (anglicky „phonic lips“). Vzduch protlačovaný jejich štěrbinou je rozechvívá a tak je produkován zvuk. Vzduch, který prochází při echolokaci přes pysky, se hromadí v jakýchsi vacích (tzv. vestibulární vaky), které v této oblasti odbočují od dýchacích cest, a nemusí být tedy vydechován. Naopak je odsud periodicky přečerpáván zpět do dýchacích cest k opakovanému využití při produkci zvuku. Stojí za připomenutí, že v případě hluboko se nořících kytovců jako jsou vorvani nebo vorvaňovci je vzduch v dýchacích cestách tlakem vody silně stlačen (v kilometrové hloubce asi na 1 % svého původního objemu) a je tedy v podstatě nedostatkovým zdrojem, jehož recyklace výše uvedeným způsobem je vlastně pro až dvouhodinovou echolokaci v temných hlubinách nutná.<ref>{{Citace periodika
=== Dýchání ===
| příjmení = Foskolos
Jelikož jsou kytovci savci, potřebují ke svému životu dýchat vzduch. Kvůli tomu jsou nuceni vyplavat na povrch, vydechnout oxid uhličitý a nadechnout se čerstvého vzduchu. Přirozeně nemohou dýchat pod vodou, takže když se potopí, svalový stah uzavře dýchací otvory (nozdry), které zůstanou uzavřené, než se znovu vynoří na hladinu.
| jméno = Ilias
| spoluautoři = et al.
| titul = Deep-diving pilot whales make cheap, but powerful, echolocation clicks with 50 µL of air
| periodikum = Scientific Reports
| datum vydání = 2019
| ročník = 9
| doi = 10.1038/s41598-019-51619-6
| url = https://www.nature.com/articles/s41598-019-51619-6#MOESM1
}}</ref> Zvukové vlny jsou v hlavě kytovce odráženy pomocí kostí a vzduchem vyplněných dutin (na rozhraní vzduch / tkáň se zvuk dobře odráží) a fokusovány tukovými tělesy tak, aby se většina zvukové energie šířila vodou směrem vpřed.<ref>{{Citace periodika
| příjmení = Huggenberger
| jméno = Stefan
| spoluautoři = et al.
| titul = Functional Morphology of the Nasal Complex in the Harbor Porpoise (Phocoena phocoena L.)
| periodikum = Respiratory Biology
| datum vydání = 2009
| ročník = 292
| doi = 10.1002/ar.20854
| url = https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ar.20854
}}</ref> Důležitým orgánem je v tomto procesu tzv. meloun, tukem vyplněný orgán tvořící nápadnou „bouli“ v přední horní části hlavy ozubených kytovců. Echolokace je velice účinný nástroj – delfíni (u nichž je zdaleka nejlépe prozkoumána) jsou s její pomocí schopni zaznamenat i předměty o rozměrech kolem 10 cm na vzdálenost přes 100 m. Při experimentech s treskou dlouhou 30 cm ji byli delfíni skákaví zaznamenat na vzdálenost 173 m, sviňuchy jen na vzdálenost 27 m.<ref name=":23" /> Pomocí analýzy spektra odražených vln jsou kytovci schopni rozlišovat mezi různými materiály.<ref name=":24" /> Ozubení kytovci používají sluch i při pátrání po kořisti, která sama zvuky vydává.<ref name=":24" />


Velmi zajímavě je u ozubených řešen problém křížení dýchacích cest a trávicí trubice v oblasti [[Hrtan|hrtanu]]. Chrupavky a měkké tkáně hrtanu včetně modifikované [[Příklopka hrtanová|epiglottis]] jsou trubicovitě protaženy vzhůru a trvale vsunuty do vnitřní nozdry, kde jsou přidržovány kruhovými svaly. Polykaná potrava tento nástavec obchází po straně. U vorvaňů a kogií je tento nástavec vychýlen k levé straně.<ref name=":25">Mazák (1988), kapitola Potrava kytovců a její přijímání</ref>
Kytovci mají nozdry na vrcholu hlavy, což jim dává možnost rychleji vydechnout a nadechnout čerstvý vzduch. Vlhkost obsažená ve vzduchu zahřátém v plicích při výdechu pod tlakem při střetu s venkovním chladným ovzduším [[Kapalnění|kondenzuje]] v kapky vody a je vidět fontánka. Tento proces známe jako výtrysk. U každého kytovce je tento výtrysk odlišný a to buď tvarem, výškou anebo úhlem. Zkušený velrybář nebo pozorovatel je schopen podle tohoto výfuku určit na dálku druh kytovce.
==== Chemorecepce ====
Otázka [[Chemoreceptor|chemorecepce]] u kytovců zůstává otevřená. Studie kytovčích [[Genom|genomů]] ukazují, že jejich [[Gen|geny]] pro chuťové receptory jsou z velké většiny nefunkční. Zachovány zůstávají pouze receptory pro slanou chuť, receptory pro sladkou, kyselou, hořkou i pro chuť [[umami]] chybí.<ref name=":20">{{Citace periodika
| příjmení = Kishida
| jméno = Takushi
| spoluautoři = et al.
| titul = Aquatic adaptation and the evolution of smell and taste in whales
| periodikum = Zoological Letters
| ročník = 1
| číslo = 2015
| doi = 10.1186/s40851-014-0002-z
| url = https://zoologicalletters.biomedcentral.com/articles/10.1186/s40851-014-0002-z
}}</ref><ref name=":21">{{Citace periodika
| příjmení = Zhu
| jméno = Kangli
| spoluautoři = et al.
| titul = The loss of taste genes in cetaceans
| periodikum = BMC Ecology and Evolution
| datum vydání = 2014
| ročník = 14
| doi = 10.1186/s12862-014-0218-8
| url = https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-014-0218-8
}}</ref> Ani tak ale není jasné, zda kytovci vůbec slanou chuť vnímají – zmíněné receptory se totiž uplatňují nejen v chuťových receptorech, ale také např. v [[Ledvina|ledvinách]], kde se podílejí na [[Osmoregulace|osmoregulaci]], která je pro kytovce vzhledem k životu v moři zásadní.<ref name=":21" />


Čich u kosticovců není potlačen zcela, ale i tak je redukovaný jak na genetické úrovni, tak na úrovni anatomické – stavba [[Čichový bulbus|čichových bulbů]] na spodině mozku naznačuje, že čich se u kosticovců již nepodílí na chování vedoucím k vyhýbání se nepříjemným pachům.<ref name=":20" /> Předpokládá se ale, že čich kosticovcům pomáhá při vyhledávání kořisti, tedy velkých aglomerací [[Zooplankton|zooplanktonu]].<ref name=":23">{{Citace periodika
=== Smysly a echolokace ===
| příjmení = Torres
Relativně malé oči mají kytovci usazeny po stranách hlavy. Důsledkem je, že kytovci s ostrým 'zobákem' (například delfíni) mají dobré binokulární vidění jak dopředu tak dolů, ale jiné druhy s tupou hlavou (například vorvaňovití) vidí sice na obě strany, ale nikdy přímo před nebo za sebe. Oči pokrývají mazlavé slzy, které je chrání před solí. Kytovci zřejmě mají dobrý zrak a to jak nad tak i pod hladinou.
| jméno = Leigh
| titul = A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems
| periodikum = Marine Mammal Science
| datum vydání = 2017
| ročník = 33
| doi = 10.1111/mms.12426
| url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.12426
}}</ref> Tento předpoklad potvrzují i behaviorální studie provedené na keporkacích.<ref>{{Citace periodika
| příjmení = Bouchard
| jméno = Bertrand
| spoluautoři = et al.
| titul = Behavioural responses of humpback whales to food-related chemical stimuli
| periodikum = PLOS ONE
| datum vydání = 2019
| doi = 10.1371/journal.pone.0212515
| url = https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212515
}}</ref>


U ozubených je situace odlišná, čich je zde potlačen velmi výrazně. Většina genů pro čichové receptory je u nich dysfunkční.<ref name=":20" /> Nosní dutiny jsou specializované na produkci vysokofrekvenčních zvuků a [[čichový epitel]] není vyvinut, chybí i ''lamina cribrosa'', ploténka [[Čichová kost|čichové kosti]] mezi stropem [[Nosní dutina|nosní dutiny]] a mozkovnou proděravělá mnoha otvůrky, jimiž u ostatních savců procházejí vlákna [[Čichový nerv|čichového nervu]].<ref name=":24">{{Citace periodika
Podobně jako oči i uši kytovců jsou malé. Život v moři způsobil ztrátu ušního boltce, který slouží k usměrňování zvukového vlnění a k zesilování signálu. Zvuk ve vodě se však šíří rychleji než ve vzduchu a vnější ucho tak už nebylo potřeba a bylo zredukováno na malý otvor v kůži, těsně za okem. Vnitřní ucho je pak vyvinuté natolik, že kytovci slyší zvuky vzdálené desítky kilometrů.
| příjmení = Kremers
| jméno = Dorothee
| spoluautoři = et al.
| titul = Sensory Perception in Cetaceans: Part I—Current Knowledge about Dolphin Senses As a Representative Species
| periodikum = Frontiers in Ecology and Evolution
| datum vydání = 2016
| ročník = 4
| doi = 10.3389/fevo.2016.00049
| url = https://www.frontiersin.org/articles/10.3389/fevo.2016.00049/full
}}</ref> Ozubení postrádají i čichové bulby a další struktury, jimiž jsou v mozku zpracovávány čichové vjemy.<ref>{{Citace monografie
| příjmení = Thewissen
| jméno = JGM
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Sensory Biology: Overview
}}</ref> Přesto existují experimentální doklady, že delfíni jsou schopni rozlišovat mezi objekty lišícími se zápachem nebo chutí a vnímat kyselé a některé hořké roztoky. Je možné, že na chemorecepci se u ozubených podílejí atypické nervové dráhy jako třeba [[trojklaný nerv]].<ref name=":24" /><ref>{{Citace periodika
| příjmení = Kremers
| jméno = Dorothee
| spoluautoři = et al.
| titul = Sensory Perception in Cetaceans: Part II—Promising Experimental Approaches to Study Chemoreception in Dolphins
| periodikum = Frontiers in Ecology and Evolution
| datum vydání = 2016
| ročník = 4
| doi = 10.3389/fevo.2016.00050
| url = https://www.frontiersin.org/articles/10.3389/fevo.2016.00050/full
}}</ref>


==== Mechanorecepce ====
Kytovci používají zvuk podobně jako [[netopýři]], vysílají zvuk, který se odrazí od objektu a vrátí se k nim. Některé druhy dokáži vysílat zvuky vydávané chvěním hlasivek v hrtanu o frekvencích od 16 [[Hertz|Hz]] ([[infrazvuk]]) až po 280 [[kHz]] ([[ultrazvuk]]) (člověk obvykle max. od 20 Hz po 20 kHz). Z toho kytovci dokážou poznat velikost, tvar, povrchové vlastnosti a pohyb objektu, stejně tak jako vzdálenost od objektu. Tato schopnost se nazývá hydrolokace neboli [[sonar]]. Díky této vlastnosti jsou kytovci schopni rozpoznat, pronásledovat a ulovit rychle plovoucí kořist i ve tmě. Vysokofrekvenční zvuky jsou u kytovců přenášeny do [[vnitřní ucho|vnitřního ucha]] nejen [[vnější zvukovod|zvukovodem]], ale přes celou kůži, tukem a kostními tkáněmi. Některé druhy mají pro zesílení příjmu a vysílání na začátku hlavy tukový [[ultrasonický]] [[anténa|reflektor]], tzv. meloun.
Vnímání změn tlaku i proudění vody kolem těla je u vodních zvířat včetně kytovců velmi důležité. Proto je u kytovců výborně vyvinut [[hmat]], čemuž odpovídá utváření příslušných oblastí mozku i velké množství [[Hmat|hmatových tělísek]] v kůži.<ref name=":23" /> Jsou schopni nejen vyhodnotit pohyb okolní vody ve chvíli, kdy se sami nepohybují, ale i změny tlaku vody proudící kolem nich při vlastním aktivním pohybu.<ref name=":16" /> Mechanoreceptory jsou výrazně koncentrovány kolem vnější nozdry (nozder), aby bylo zajištěno, že nádech proběhne až po vynoření. Kolem tlamy kosticovců i jinde po těle najdeme i hmatové chlupy (vibrisy). U ozubených vibrisy nenacházíme (s výjimkou delfínovců), ale i u nich se v prenatálním vývoji objevují. Vypadávají sice záhy po porodu, ale [[Mechanoreceptor|mechanoreceptory]], které jsou s nimi asociovány, se zachovávají a zachovávají si mechanoreceptivní funkci.<ref name=":24" /> Patrně se podílejí i na [[Elektrorecepce|elektrorecepci]] (vnímání slabých elektrických polí produkovaných např. pohybující se kořistí).<ref>{{Citace periodika
| příjmení = Czech-Damal
| jméno = Nicole
| spoluautoři = et al.
| titul = Electroreception in the Guiana dolphin (Sotalia guianensis)
| periodikum = Proceedings of the Royal Society B
| datum vydání = 2011
| ročník = 279
| doi = 10.1098/rspb.2011.1127
| url = https://royalsocietypublishing.org/doi/10.1098/rspb.2011.1127
}}</ref>


=== Trávicí soustava a potrava ===
Zvuky kytovci používají i ke [[komunikace|komunikaci]]. Ať už jednoduché sténání, hvízdaní, mlaskání nebo složité 'zpívání' [[keporkak]]a, které je velmi populární a často ho můžeme slyšet v dokumentárních seriálech.
[[Soubor:Baleen-graywhale.jpg|náhled|Pohled na řadu kostic v tlamě plejtvákovce, jehož mrtvola byla vyplavena na břeh. Na obrázku je vidět, že kostice jsou na horní čelisti uspořádány za sebou. Na fotografii je zachycen pohled na jejich vnější, nezřasený okraj a horní čelist je tu otočená hřbetní stranou dolů. ]]
Všichni kytovci se živí jinými živočichy (jsou draví), ačkoli pocházejí z převážně [[Býložravec|býložravých]] prapředků. Přechod na živočišnou potravu si vyžádal změny v [[Trávicí enzym|enzymatické]] výbavě a byl zdokumentován také na [[Biochemie|biochemické]] bázi.<ref>Guiting Li, Huiyuan Wei, Juanjuan Bi, Xiaoyue Ding, Lili Li, Shixia Xu, Guang Yang & Wenhua Ren (2020). [https://link.springer.com/article/10.1007/s00239-020-09952-2 Insights into Dietary Switch in Cetaceans: Evidence from Molecular Evolution of Proteinases and Lipases.] ''Journal of Molecular Evolution'', '''88''': 521–535. doi: https://doi.org/10.1007/s00239-020-09952-2</ref> Co se potravy a jejího získávání týká, existují zásadní rozdíly mezi oběma podskupinami kytovců. [[Ozubení]] (např. delfíni, kosatky, vorvani), mají v typickém případě mnoho nerozlišených kuželovitých zubů, jež používají k chytání ryb, hlavonožců a jiných mořských živočichů. Svoji potravu nežvýkají, ale polykají vcelku. Někteří ozubení, zejména specialisti na lov hlavonožců, však mají chrup značně redukovaný (např. [[narval]] a vorvaňovci).<ref name=":15" />


Naproti tomu [[kosticovci]] (plejtváci, velryby apod.) nemají zuby vůbec (zakládají se jim jen [[Embryo|embryonální]] neprořezávající základy zubů), místo toho mají v ústech četné zřasené rohovinové pláty (může jich být i několik set) – [[Kostice (kytovci)|kostice]], které ve dvou řadách visí dolů z ústního patra.<ref name=":16" /> Tato sada za sebou uspořádaných plátů funguje jako veliký filtr, na němž se zachycují drobnější živočichové (nejčastěji pelagičtí korýši, tzv. [[Kril|krill]], ale může jít i o hejnové ryby, některé hlavonožce, [[Plankton|planktonní]] [[Plži|plže]] aj.).<ref name=":25" /> Kosticovci nejprve do otevřených úst pohltí obrovské množství mořské vody i s kořistí, pak vodu za pomoci [[Jazyk (orgán)|jazyka]] a svalů tváří a ústního dna vytlačují přes kostice ven. Na kosticích uvízlé živočichy pak polykají. Plejtváci mají na spodní čelisti značně roztažitelné vaky, do nichž jsou schopni nabrat a poté přefiltrovat až 60–80 m<sup>3</sup> vody, což jsou objemy srovnatelné s objemem jejich vlastního těla, někdy jej i překračující.<ref>{{Citace periodika
U kytovců došlo v mnoha případech až a úplnému vymizení čichových partií v mozku, z čehož vyplývá potlačení čichu. Podle utváření chuťových center v mozku lze soudit, že chuť je naopak vyvinuta vcelku dobře.
| příjmení = Goldbogen
| jméno = Jeremy
| spoluautoři = et al.
| titul = Big gulps require high drag for fin whale lunge feeding
| periodikum = Marine Ecology Progress Series
| datum vydání = 2007
| ročník = 349
| strany = 289–301
| doi = 10.3354/meps07066
| url = https://www.int-res.com/articles/meps2007/349/m349p289.pdf
}}</ref>


[[Žaludek]] kytovců má složitou stavbu. U kosticovců je trojdílný. První část, předžaludek, zpracovává potravu jen mechanicky. Následuje žláznatý žaludek stavěný a fungující jako typický savčí žaludek: v kyselém prostředí zde fungují trávicí enzymy, hlavně [[Proteáza|proteázy]]. Na poslední část žaludku, vrátníkový (pylorický) žaludek, navazuje přední část [[Tenké střevo|tenkého střeva]], [[dvanáctník]]. Ozubení mohou mít pylorický žaludek rozdělený do několika oddílů. V předžaludku se u nich někdy nacházejí [[Gastrolit|gastrolity]]. Do dvanáctníku vyúsťují vývody [[Slinivka břišní|slinivky břišní]] (produkuje trávicí enzymy) a jater (produkují [[žluč]]). [[Žlučník]] kytovcům chybí. Střevo je u kytovců relativně velmi dlouhé, u ozubených může dosahovat až desetinásobku délky těla (u 17 m dlouhého vorvaně byla zaznamenána délka střeva přes 185 m). U kosticovců je sice střevo relativně kratší (cca pětinásobek délky těla), ale i tak dosahuje u obřích zástupců velkých délek (až 160 m). U kosticovců lze nalézt [[slepé střevo]], ozubeným chybí.<ref name=":16" />
Výborně je však vyvinut hmat, čemuž odpovídá utváření mozku i velké množství [[smyslová soustava|hmatových tělísek]] v kůži. Orgány hmatu jsou [[modifikace|modifikovány]] k celé řadě speciálních funkcí. Jsou schopni nejen vyhodnotit pohyb okolní vody ve chvíli, kdy se sami nepohybují, ale i změny tlaku vody proudící kolem nich při vlastním aktivním pohybu.


== Potrava ==
=== Rozměry ===
[[Soubor:Vaquita size.svg|náhled|Sviňucha kalifornská je považována za nejmenšího kytovce]]
Co se potravy a jejího získávání týká, můžeme kytovce rozdělit do dvou skupin: Na [[ozubení|ozubené]], kteří mají mnoho zubů, jež používají k chytání ryb, chobotnic a jiných mořských živočichů. Svoji potravu nežvýkají, ale polykají vcelku. Mezi ozubené patří například delfíni a vorvaňovití.
[[Soubor:Blue whale size.png|náhled|Plejtvák obrovský je největší ze všech živočichů]]
Nejmenší kytovci, delfínovec laplatský, některé plískavice rodu ''Cephalorhynchus'' a sviňucha kalifornská, dosahují délky asi 1,5 m. Řada kytovců ale dorůstá velkých až obřích rozměrů. Skoro všichni kosticovci (s výjimkou velrybky malé a plejtváka malého) dosahují běžně délek přes 10 m, v rámci kosticovců tuto hranici přesahuje vorvaň a vorvaňovec velký, blíží se jí [[vorvaňovec Arnouxův]] a kosatka dravá.<ref name=":15" />


V současnosti patří mezi kytovce největší (nejtěžší) žijící živočichové na světě, především je to [[plejtvák obrovský]] dosahující hmotnosti kolem 180 tun a maximální délky snad až 33,6 metru<ref>https://www.smithsonianmag.com/science-nature/todays-whales-are-so-huge-why-arent-they-huger-180969466/</ref> (v případě maximální délky jde o údaj z roku 1909, o jehož přesnosti panují určité pochyby; každopádně největší plejtváci mohou hranici 30 m přesahovat).<ref>{{Citace periodika
Oproti tomu [[kosticovci]] nemají zuby vůbec, místo toho mají rohovinové pláty - [[Kostice (kytovci)|kostice]], které visí z horní čelisti. Tyto pláty fungují jako veliké filtry, které oddělují [[krill|malé živočichy]] z mořské vody. Do této skupiny patří [[plejtvák obrovský]], [[keporkak]], [[velryba grónská]] nebo [[plejtvák malý]].
| příjmení = McClain
| jméno = Craig
| spoluautoři = et al.
| titul = Sizing ocean giants: patterns of intraspecific size variation in marine megafauna
| periodikum = PeerJ
| datum vydání = 2015
| ročník = 3
| doi = 10.7717/peerj.715
| url = https://peerj.com/articles/715
}}</ref> Největší kytovci tak hmotností překonávají i největší dosud známé [[Sauropodi|sauropodní dinosaury]] (ačkoliv ti mohli být s délkou až kolem 40 metrů celkově delší). Žádný dnes známý sauropodní dinosaurus zřejmě nepřesahoval hmotnost 100 tun, zatímco u kytovců ji přesáhly nejméně tři druhy.<ref>https://dinosaurusblog.com/2018/07/09/velryby-proti-sauropodum/</ref> Po plejtvákovi obrovském je největším a nejtěžším druhem plejtvák myšok, následuje vorvaň obrovský a pravé velryby (velrybovití).<ref name=":15" />


== Rozmnožování ==
=== Rozmnožování, ontogeneze, věk ===
Vyhledávání a přijímání potravy je prostředkem k základnímu cíli všech živočichů, být schopný reprodukce. Reprodukce kytovců zachovává základní schéma typické pro savce. Nejnápadnějším rozdílem je to, že zevní orgány samců nebo [[bradavka|mléčné bradavky]] samic nejsou v klidu vůbec patrné a bez bližšího ohledání jsou pohlaví nerozlišitelná, i rozdíly ve velikostech zvířat jsou nepatrné.
[[Rozmnožování|Reprodukce]] kytovců zachovává základní schéma typické pro savce. Nejnápadnějším rozdílem je to, že zevní orgány samců nebo [[bradavka|mléčné bradavky]] samic nejsou v klidu vůbec patrné a bez bližšího ohledání jsou [[Pohlavnost|pohlaví]] nerozlišitelná, i mezipohlavní rozdíly ve velikostech jsou u většiny druhů nevýrazné.<ref name=":26">Mazák (1988), kapitola Rozmnožování, život, sociální vztahy a inteligence kytovců</ref> U kosticovců, sviňuch a delfínovců bývají poněkud větší samice, u ostatních kytovců je tomu spíše naopak. Výrazný sexuální dimorfismus vykazuje vorvaň, kde jsou samci výrazně větší než samice.<ref name=":15" /><ref name=":27">{{Citace monografie
| příjmení = Chivers
| jméno = Susan
| příjmení2 =
| jméno2 =
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Cetacean Life History
}}</ref>
[[Soubor:Blue Whale Penis.jpg|náhled|Preparovaný penis plejtváka obrovského]]
[[Penis]] je u kytovců dlouhý (u největších kytovců při erekci až třímetrový), štíhlý, ke konci se zužující. V klidu je však uložen v tzv. penisové štěrbině. [[Varle|Varlata]] jsou uložena v [[Břicho|břišní dutině]], nesestupují do [[Šourek|šourku]]. Také samičí pohlavní orgány jsou skryty v podélné urogenitální štěrbině, ve které jsou uloženy i vývody [[Vylučovací soustava|vylučovací soustavy]]. Směrem do stran od ní jsou další dvě kratší štěrbiny, kde jsou uloženy struky [[Mléčná žláza|mléčných žláz]]. Mléko kytovců obsahuje neobvykle vysoký podíl tuku (30–50 procent) a je značně [[Viskozita|viskozní]].<ref name=":26" />
[[Soubor:Beached Whale - Jacob Matham 1602.png|náhled|Na tomto mědirytu je zachycen vorvaň, jehož tělo bylo r. 1598 v Holandsku vyplaveno na břen. Po smrti se jeho penis uvolnil z genitální štěrbiny. Ještě dále směrem k ocasu je patrný řitní otvor. ]]
Sociální chování kytovců je velmi různorodé. U některých druhů žijí samci a samice trvale ve skupině, kde panuje přísná [[hierarchie]], jiné žijí v párech, u jiných se samci zdržují odděleně. Období [[páření]] je u mnoha druhů kytovců provázeno milostnými hrami, kdy zvířata vyskakují z vody, třou se těly o sebe, hladí se ploutvemi. Vlastní páření probíhá častěji ve vodorovné, ale někdy i ve svislé poloze, obě zvířata se objímají ploutvemi a břichy jsou přitlačena k sobě. Samotná [[kopulace]] probíhá krátce, většinou nepřesahuje 30 sekund a opakuje se i několikrát denně.<ref name=":26" />


[[Březost]] trvá u většiny druhů 10 až 12 měsíců, někdy déle (u plejtvákovce nebo plejtváka obrovského 13–14 měsíců, u vorvaně a narvala bývá uváděna doba březosti 14 až 15 měsíců, u [[Kulohlavec černý|kulohlavců]] 12–16 měsíců, u kosatky dravé až 12–17 měsíců.<ref name=":26" /><ref name=":27" /><ref>{{Citace monografie
U některých druhů žijí samci a samice trvale ve skupině kde panuje přísná hierarchie, jiné žijí v párech, u jiných se samci zdržují odděleně. Období říje není u všech druhů stejné. V té době připlouvají do teplejších vod [[Subtropický podnebný pás|subtropického pásma]] nebo až blízko k [[Zemský rovník|rovníku]]. Období [[páření]] je u kytovců provázeno milostnými hrami, vyskakují z vody, třou se těly o sebe, hladí se ploutvemi. Vlastní páření probíhá ve vodorovné i svislé poloze, obě zvířata se objímají ploutvemi a břichy jsou přitlačena k sobě. Samotná [[kopulace]] probíhá asi 30 sekund a opakuje se několikrát denně.
| příjmení = Reidenberg
| jméno = Joy
| příjmení2 = Leitman
| jméno2 = Jeffrey
| titul = Encyclopedia of Marine Mammals
| editoři = William Perrin, Bernd Würsig, J. Thewissen
| vydání = 2
| vydavatel = Academic Press
| rok vydání = 2008
| kapitola = Cetacean Prenatal Development
}}</ref> Samice rodí zpravidla jen jedno dobře vyvinuté mládě, porod probíhá ocasem napřed a bývá rychlý. Matka jej hned nato postrkuje hlavou nad hladinu, aby se mládě poprvé nadechlo, ačkoli to už umí plavat. Stejně tak mu pomáhá nastavováním těla najít [[struk (vemeno)|struk]] s mlékem, z kterého mu po uchopení stahem svalů vstřikuje tučné mléko do tlamy. Kosticovci kojí mláďata asi půl roku, ozubení rok nebo i déle. Delší období kojení a péče o mláďata u ozubených může souviset s nutností učit se mnoho sociálních i loveckých dovedností.<ref name=":27" /> Mláďata největších samic (u plejtváka obrovského asi 30 m) dosahují při narození délky až 8 metrů a hmotnosti až 2200 kg. Jde o největší novorozence mezi živočichy. I u menších kytovců jsou mláďata relativně velká, dosahují asi 1/3 délky těla matky. Kojená mláďata rostou velice rychle. <ref name=":26" /> Pohlavní dospělosti dosahují někteří kytovci po několika letech (asi 3 roky u sviňuch, 4 roky u keporkaků), častěji však asi po 10 letech, pravé velryby až po asi 25 letech. Pohlaví, které dorůstá větší velikosti, dospívá později. To je výrazné např. u vorvaňů, kde samci dospívají asi po 20 letech, samice zhruba v polovičním věku.<ref name=":27" />


Jen výjimečně (plejtvák malý, sviňucha) rodí kytovci mládě každoročně. Častější je dvouletá, případně tříletá perioda mezi jednotlivými mláďaty. U kosticovců jsou porody synchronizovány s migracemi z chladných lovišť do teplých tropických vod, kam tato zvířata plují rodit, patrně kvůli snazší termoregulaci jejich potomků a menšímu riziku predace.<ref name=":27" />
[[Březost]] trvá v průměrně 10 až 12 měsíců, výjimečně až 16 měsíců. Samice rodí zpravidla jen jedno mládě, které vychází z jejího těla ocasem napřed. Matka jej hned nato postrkuje hlavou nad hladinu, aby se mládě poprvé nadechlo, to už samozřejmě umí plavat. Stejně tak mu pomáhá nastavováním těla najít [[struk (vemeno)|struk]] s mlékem, z kterého mu po uchopení stahem svalů vstřikuje mléko do tlamy. Mláďata největších samic (asi 30 m) dosahují při narození délky až 8 metrů.


Malé druhy kytovců (např.) sviňuchy se dožívají věku kolem 20 let. Běluhy nebo delfíni asi 40–50 let, vorvaň přes 70 let. Nejvyššího věku se dožívají kosticovci, u plejtváků a velryb se odhaduje nejvyšší věk i přes 100 let.<ref name=":31">{{Citace elektronického periodika
Menší druhy dosahují pohlavní dospělosti po 2 až 4 létech, větší druhy po 8 až 10 létech. Menší kytovci rostou asi 20 let, ti větší až 40 let.
| titul = AnAge Database
| periodikum = genomics.senescence.info
| url = https://genomics.senescence.info/species/query.php?search=cetacea
| datum přístupu = 2021-06-30
}}</ref> U velryb se na základě nepřímých (a proto nejistých) odhadů věku (denaturace proteinů oční čočky, pozůstatky starých harpun v těle, počet ovulací vaječníku)<ref name=":32">{{Citace periodika
| příjmení = Haag
| jméno = Amanda
| titul = Patented harpoon pins down whale age
| periodikum = Nature
| datum vydání = 2007
| ročník = 227
| doi = 10.1038/news070618-6
| url = https://www.nature.com/articles/news070618-6.pdf
}}</ref><ref>{{Citace periodika
| příjmení = George
| jméno = John
| spoluautoři = et al.
| titul = A new way to estimate the age of bowhead whales (Balaena mysticetus) using ovarian corpora counts
| periodikum = Canadian Journal of Zoology
| datum vydání = 2011
| doi = 10.1139/z11-057
}}</ref> uvažuje až o stopadesátiletých, případně (na základě studia racemizace aspartátu) i dvousetletých kusech.<ref name=":31" /> Tyto nejvyšší odhady jsou ale přijímány s nedůvěrou.<ref name=":32" />


== Evoluce kytovců ==
== Evoluce kytovců ==

Verze z 2. 7. 2021, 10:30

Jak číst taxoboxKytovci
alternativní popis obrázku chybí
Zástupci kytovců: nahoře vorvaň, v levém sloupci kosatka dravá a keporkak, v prostředním sloupci plejtvákovec šedý, sviňucha obecná a narval, v pravém sloupci delfínovec amazonský, vorvaňovec tropický a velryba jižní
Vědecká klasifikace
Říšeživočichové (Animalia)
Kmenstrunatci (Chordata)
Podkmenobratlovci (Vertebrata)
Třídasavci (Mammalia)
Řádsudokopytníci (Cetartiodactyla)
Infrařádkytovci (Cetacea)
Brisson, 1762
parvřády (malořády)
Sesterská skupina
hrochovití (Hippopotamidae)
Některá data mohou pocházet z datové položky.

Kytovci (Cetacea) jsou podskupinou (infrařádem) sudokopytníků adaptovanou na život v moři, jejich sesterskou skupinou jsou hrochovití.[1] Kvůli výrazným anatomickým a fyziologickým adaptacím na vodní způsob života je jejich evoluční souvislost se suchozemskými savci dosti zastřená a donedávna byli považováni za samostatný řád. Mezi jejich nejnápadnější znaky související s přechodem do vody paří přeměna předních končetin v ploutve a vymizení zadních končetin, vznik horizontální (vodorovné) ocasní ploutve, která je hlavním orgánem pohybu, ztráta srsti, ztráta vnějšího ucha, získání hydrodynamického vřetenovitého tvaru těla a další. Typicky savčím projevem je jejich potřeba dýchat vzduch. Někteří kytovci sice mohou pod vodou vydržet i přes dvě hodiny, ale nakonec se nadechnout musí. Nozdry jsou u kytovců posunuty v podstatě na temeno hlavy, lebka je touto tzv. teleskopizací oproti lebce jiných savců silně modifikovaná.[2] Evoluční proměna původně suchozemských savců v plně vodní zvířata je dnes dobře dokumentovaná množstvím fosilních dokladů.[3]

Mezi kytovce řadíme přes 80 druhů v 13–14 čeledích.[4] Lze je rozdělit na dvě výrazně rozdílné podskupiny, kosticovce (Mysticeti) a ozubené (Odontoceti). Kosticovci jsou bezzubí, svou kořist (nejčastěji krill, tedy pelagické korýše) filtrují z vody pomocí rohovinových kostic. Patří mezi ně obrovští savci jako jsou velryby nebo největší živočichové všech dob, plejtváci. Ozubení jsou typičtí dravci, živí se ponejvíce rybami nebo hlavonožci. V tlamě mohou mít mnoho kuželovitých nerozlišených zubů, ale mohou být i bezzubí. Nejznámější (a nejprozkoumanější) jsou mezi nimi delfíni, kosatky, sviňuchy, běluha nebo vorvaň. Patří mezi ně nejlepší a nejvytrvalejší potápěči mezi savci – vorvaňovci. Velice zajímavou vlastností ozubených je schopnost echolokace – využívání ultrazvuků k mapování okolí a pátrání po kořisti pomocí vnímání ozvěn.[2]

Systematika a taxonomie kytovců

Cetus, mořská obluda jako souhvězdí (v češtině „velryba“)

Kytovci odedávna budili pozornost svou zvláštní směsicí „rybích“ a savčích znaků. Ve 4. st. př. n. l. se o nich ve svých spisech známých pod latinskými jmény Historia animalium a De partibus animalium zmiňuje Aristotelés.[5][6] Uvědomuje si, že dýchají vzduch, rodí živá mláďata, která kojí, a považuje je za tvory „na půli cesty mezi vodními a suchozemskými [zvířaty]“.[7] Intuitivní vnímání většiny plně vodních obratlovců jako „ryb“ se projevuje ještě v díle Carla Linného, který teprve ve slavném desátém vydání svého Systema naturae řadí kytovce mezi savce (jako jejich 8., poslední řád Cete),[8] zatímco v předchozích vydáních je řadí mezi ryby.[9]

Vědecký název řádu je odvozen od latinského slova cetus, jehož původní význam byl „velké mořské zvíře“. Tento výraz pochází z řeckého slova ketos,[10] jež označovalo velrybu, jakoukoliv obrovskou rybu či „mořského netvora“. Vědní obor, který se zabývá kytovci, se nazývá cetologie. Také český výraz „kytovec“ je odvozen od Preslova výrazu „kyt“, tj. „velryba“, z ruského „kit“ z řeckého ketos.[11]

Kytovci v rámci sudokopytníků

Fylogenetické postavení kytovců v rámci sudokopytníků
 sudokopytníci 

 mozolnatci 

 Artiofabula 

 štětináči 

 Cetruminantia 

 přežvýkavci 

 Whippomorpha 

 hrochovití 

 kytovci 

Kytovci jsou dnes považováni za jednu z podskupin sudokopytníků (Artiodactyla nebo Cetartidactyla). Jejich nejbližší žijící příbuzní jsou hrochovití. Společně s hrochovitými tvoří skupinu Whippomorpha (syn. Cetancodonta).[12] První část názvu skupiny Whippomorpha je složeninou z anglických slov „whale“ a „hippo“, tedy „velryba“ a „hroch“. Do skupiny Cetruminantia pak řadíme Whippomorpha a přežvýkavce (Ruminantia). Ještě obsáhlejší skupina, do které navíc řadíme štětináče (prasatovité a pekariovité), byla pojmenována Artiofabula.[13] Skupině Whippomorpha buď není přiřazena žádná taxonomická kategorie, nebo je vnímána nejčastěji jako podřád; kytovci jsou pak infrařádem sudokopytníků.[1] Kytovčí podskupiny kosticovci a ozubení označujeme jako parvřády (malořády), což je vzácně užívaná taxonomická kategorie, v tomto případě souvisí její užijí s přesunem bývalého samostatného řádu kytovci hluboko dovnitř řádu sudokopytníci. Lze se však setkat i s pojetím, kde kytovci nejsou infrařádem, ale podřádem. Existují publikace, kde jsou na různých místech poněkud inkonzistentně uváděny obě tyto možnosti.[14][15]

Systém kytovců

Příbuzenské vztahy mezi recentními čeleděmi kytovců
 kytovci 
 kosticovci 

 velrybovití 

 velrybkovití 

 plejtvákovcovití 

 plejtvákovití 

 ozubení 

 vorvaňovití 

 kogiovití 

 indičtí delfínovcovití Soubor:Platanista gangetica (white background).png

 vorvaňovcovití 

 čínští delfínovcovití 

 amazonští delfínovcovití Soubor:Inia geoffrensis (white background).png

 laplatští delfínovcovití Soubor:Pontoporia blainvillei (transparent background).png

 delfínovití 

 sviňuchovití 

 narvalovití 

Recentní kytovce lze rozdělit na dvě velmi dobře vymezené skupiny, parvřády ozubení (Odontoceti) a kosticovci (Mysticeti). Uvažujeme-li i fosilní zástupce kytovců, je vhodné zavést monofyletickou skupinu Autoceta čili Neoceti,[16] do které řadíme oba recentní parvřády, jejich posledního společného předka a všechny jeho potomky.

Kosticovci nikdy nemají zuby, místo nich jsou vybaveni kosticemi, jimiž filtrují z vody drobnou kořist. Mají zachovány obě vnější nozdry, jejich lebka je symetrická. Levá a pravá polovina spodní čelisti vpředu nesrůstá. Není u nich vyvinuta hrudní kost. Dorůstají velkých až obřích rozměrů (od cca 5 m u velrybky malé po více než 30 m u plejtváka obrovského).

Ozubení většinou zuby mají, mají schopnost echolokace a na temeni hlavy jen jedinou nozdru; jejich lebka je asymetrická. Spodní čelist mají vpředu v oblasti symfýzy srostlou v jedinou kost. Kost hrudní je u nich vyvinuta. Kromě vorvaně, který je mimořádně velkým druhem (dosahuje délky až přes 20 m), měří od 1,5 (sviňucha kalifornská a delfínovec laplatský) do asi 11 m (vorvaňovec velký).[2]

Mezi kosticovci zaujímají bazální postavení pravé velryby. Moderní fylogenetické studie naznačují, že plejtvákovití jsou parafyletičtí a že plejtvákovec by měl být řazen mezi ně.[17][4] Mezi ozubenými jsou bazální vorvaň a jemu sesterské kogie (nadčeleď Physeteroidea). Delfínovci, považovaní dříve za starobylou, ale jednotnou vývojovou linii, která po rozšíření úspěšné čeledi delfínovitých nalezla útočiště ve sladkých vodách, jsou polyfyletickou skupinou. Každý ze čtyř recentních rodů dnes řadíme do samostatné čeledi, které nemají zavedená česká jména. Evolučně izolovaní „indičtí“ delfínovci rodu Platanista jsou řazeni do čeledi Platanistidae, zbývající tři čeledi delfínovců tvoří monofyletickou skupinu. „Čínští“ delfínovci rodu Lipotes patří do čeledi Lipotidae, „laplatští“ delfínovci rodu Pontoporia do čeledi Pontoporiidae a konečně „amazonští“ delfínovci rodu Inia do čeledi Iniidae. Trojice čeledí delfínovití, sviňuchovití a narvalovití tvoří monofyletickou skupinu, nadčeleď Delphinoidea.[3][18]

Charakteristika

Kytovci jsou ze všech savců nejlépe přizpůsobeni životu ve vodě; jediná další plně akvatická skupina savců jsou sirény. Kytovci vodu nikdy neopouštějí, pokud se ocitnou na souši, hrozí jim smrt zadušením (na souši váha jejich vlastního těla příliš stlačuje hrudník a znemožňuje jim účinně dýchat) a přehřátím (voda odvádí teplo mnohem lépe než vzduch).[19] Díky některým adaptacím na plně vodní způsob života mohou kytovci připomínat ryby (např. tvarem těla nebo končetinami, které mají charakter ploutví) podobně jako někteří další vodní obratlovci (např. vymřelí ichtyosauři). Nejde však o doklad příbuznosti ryb a kytovců (popř. ichtyosaurů aj.), ale o ukázku konvergentní evoluce: voda klade na organismy, které ji obývají, velmi specifické nároky a tyto organismy pak evolučně spějí k podobným řešením problémů života ve vodě. Přes povrchní podobnost s rybami jsou kytovci placentální savci, jak dokládá celá řada znaků:[2][20]

  • rodí živá mláďata, která jsou před porodem vyživována placentou v těle matky; mláďata jsou kojena mateřským mlékem
  • dýchají vzduch pomocí plic, pro efektivní oddělení okysličené a odkysličené krve mají čtyřdílné srdce (se dvěma síněmi a dvěma komorami)
  • jsou teplokrevní (homoiotermní a endotermní)
  • přes absenci srsti mají někteří zástupci (např. velryby) dobře vyvinuté hmatové chlupy (vibrisy)
  • jejich mozek má velmi pokročilou stavbu, zejména dobře je vyvinut koncový mozek s rýhovanou mozkovou kůrou
  • kostra je sice modifikovaná (zejména kostra končetin), ale stále typicky savčí (např. spodní čelist je tvořena jedinou kostí, ve středním uchu najdeme tři sluchové kůstky, krčních obratlů je 7)
  • ačkoli je hlavním orgánem pohybu ocas vybavený ploutví, na rozdíl od ryb, obojživelníků či plazů se páteř nevlní v horizontální rovině, ale v rovině vertikální (stejně jako u dalších savců – viz způsob pohybu vyder či ploutvonožců); ocasní ploutev je proto horizontální

Na druhou stranu u nich vodní způsob života vedl k mnoha odlišnostem od většiny ostatních savců; následují nejnápadnější zvláštnosti:[2]

  • tělo má vřetenovitý, hydrodynamický tvar kladoucí proudící vodě co nejmenší odpor, není kryto srstí, ale je lysé
  • chybí vnější ucho (boltec a zvukovod) i bubínek
  • nozdry jsou posunuty na vrchol hlavy, u ozubených je navíc zachována jen jedna (levá) nozdra
  • přední končetiny jsou přeměněny v ploutve, zadní končetiny jsou redukovány; vytvořeny jsou i další ploutve (ocasní, většinou i hřbetní)
  • chrup (je-li vyvinut) je nerozlišený (je homodontní) a není během života vyměňován (není vyvinut mléčný a trvalý chrup, je tedy monofyodontní)

Kostra

Teleskopická lebka delfína s obarvenými jednotlivými kostmi: 1 - k. čelní, 2 - k. nosní, 3 - k. čichová, 4 - horní čelist, 5 - mezičelist, 6 - k. slzní, 7 - dolní čelist, 8 - naznačená pozice k. lícní (u ozubených kytovců je velmi tenká a na preparované lebce se nezachovala), 9 - k. spánková, 10 - k. klínová, 11 - k. temenní, 12 - k. týlní

Kosti recentních kytovců mají celkově nižší hustotu než kosti suchozemských savců. Povrchová vrstva kompaktní kostní hmoty je ztenčená a uvnitř zčásti nahrazená houbovitou kostí. Kvůli takto zvětšenému vnitřnímu objemu kostí je v kosti vyšší podíl kostní dřeně, jež je z velké části tvořena tukem, který má nižší hustotu nežli voda. Díky tomu kytovci při plavání nemusejí vynakládat tolik energie na to, aby se udrželi při hladině. U vymřelých kytovců, kteří ještě žili obojživelným způsobem života, se naopak setkáváme s tzv. pachyostózou, zesílením a „ztěžknutím“ kostí, což jim umožňovalo snáze se pohybovat po dně mělkých vod.[21]

Lebka kytovců je takzvaně teleskopická. Teleskopizace spočívá především v přesunutí nozder na vrchol hlavy, což však vyžaduje výrazné změny v proporcích a vzájemné pozici lebečních kostí. Horní čelist a mezičelist jsou výrazně prodloužené, kost čelní a kosti nosní jsou naopak silně zkrácené, kost slzní se dostává mimo kontakt s očnicí atd. Také mozkovna je kvůli průchodu dýchacích cest shora dolů zkrácená, i tak je však dosti prostorná (je vysoká a široká).[22][23][24] U ozubených je lebka zřetelně asymetrická, především (ale nejen) v oblasti vyústění nozder. Při pohledu shora je lehce zakřivená k levé straně.[22] Asymetrie bývá pokládána za adaptaci pro zvýšení přesnosti při určování směrů, z nichž přichází zvuky, popř. i za adaptaci pro zlepšení parametrů generovaného echolokačního signálu.[25][26]

Lebka kytovců je relativně široká, má výrazně protažené čelisti (čenich, rostrum), očnice jsou umístěny po stranách, relativně nízko. Na spodní části lebky jsou umístěna sluchová pouzdra čili sluchové výdutě chránící vnitřní ucho, oproti ostatním savcům jsou jen relativně volně spojena s ostatními kostmi lebky, což přispívá k dobrému slyšení pod vodou, zejména k určování směru, ze kterého zvuk přichází (díky eliminaci rušivých vibrací přenášených lebkou). Mnohé kosti lebky obsahují dutiny vyplněné vzduchem nebo tukem.[22][23]

Vzhledem k silné redukci zadní končetiny, jejíž pletenec (pánevní kosti) již není napojen na páteř, nesrůstají u kytovců obratle v křížové oblasti v křížovou kost, ale zůstávají volné a jsou považovány za bederní obratle. Pravé křížové obratle tedy chybí. Páteř kytovců je většinou složena z většího počtu obratlů než je u savců typické, zmnoženy jsou hlavně ocasní a bederní obratle. Např. delfín obecný má 73 obratlů, a to 7 krčních (cervikálních), 13 hrudních (thorakálních), 22 bederních (lumbálních), žádné křížové (sakrální) a 31 ocasních (kaudálních), což lze vyjádřit zkráceným zápisem C7:T13:L22:S0:Ca31.[27] Delfín skákavý má 60 obratlů (C7:T13:L14:S0:Ca26), velryba černá 58 (C7:T14:L11:S0:Ca26).[28] Nízký počet obratlů (41) má inie amazonská.[22] Obratle zasahují až na samý konec těla (na rozdíl např. od kapustňáků, kde páteř nedosahuje ke konci ocasní ploutve).[28]

Ploutve, končetiny

Hlavním orgánem pohybu je u kytovců ocas vybavený horizontální ocasní ploutví. Na rozdíl od ryb však ocasní ploutev kytovců není vyztužena kostěnými paprsky, ale vazivem. Podobně i hřbetní ploutev, kterou nacházíme u většiny kytovců a která stabilizuje tělo při plavání, je kožní duplikaturou vyztuženou vazivem. Také přední končetiny jsou přeměněny v ploutve. Uplatňují se zejména při stabilizaci a manévrování. Pažní kost a kosti předloktí, jakož i zápěstní a záprstní kůstky jsou v nich zkrácené, loketní i zápěstní kloub je nefunkční, kostra prstů tvořící základ hlavní části ploutve je ale vyvinutá dobře, články prostředních prstů mohou jsou zmnoženy (tento jev se nazývá polyfalangie), první a pátý prst mívá naopak počet článků snížený, někdy až na jediný.

Zadní končetiny jsou zakrnělé, jejich jediným pozůstatkem jsou zbytky pánevních kostí a stehenní kosti zarostlé ve svalovině břicha. Na povrchu těla nejsou zadní končetiny patrné, velmi vzácně mohou být u některých jedinců vyvinuty v podobě malých prstovitých atavistických výrůstků.[22]

Kůže

Sušící se kůže běluhy s vrstvou podkožního tuku
Stahování velrybí kůže se silnou vrstvou podkožního tuku

Kromě hydrodynamického tvaru těla přispívá k rychlému a efektivnímu pohybu kytovců ve vodě také stavba kůže. Kůže je bez srsti, její povrch je velice hladký a hydrofobní, nesmáčivý. Dostane-li se ven z vody, voda z povrchu těla ihned steče a kůže je téměř suchá. Taková vlastnost kůže snižuje na minimum tření ve vodním prostředí. Dále je kůže měkká, velice pružná a během plavání se svým povrchem přizpůsobuje proudění okolní vody, tím na minimum eliminuje vznik brzdících turbulencí, dokáže svým vlněním ovládaným podkožním svalstvem přeměnit vzniklé turbulentní proudění na laminární. Tato schopnost je zvláště významná při plavání ve skupinách.[29]

Kůže je složena ze tří vrstev, jak je u obratlovců obvyklé. Nejsvrchnější je poměrně silná epidermis (pokožka), která u velkých druhů dosahuje tloušťky až 1 cm. Prostřední vrstva, dermis, je tvořena vazivem. Díky zvrásnění, které zasahuje hluboko do epidermis, fixuje tato vrstva pevně pokožku.[22] Spodní vrstvu, hypodermis, tvoří podkožní tukové vazivo, u kytovců modifikované v souvislou vrstvu podkožního tuku s relativně tuhou konzistencí způsobenou vyšším podílem kolagenu a elastinu, než je u savců běžné.[30] Díky svým tepelně-izolačním vlastnostem slouží tuková vrstva jako náhražka chybějící srsti. Tuková izolace a další přizpůsobení, jako je protiproudová výměna tepla v cévách (chladná krev vracející se z kůže do těla se ohřívá paralelně vedenou tepennou krví tekoucí opačným směrem) umožňují některým kytovcům obývat i ledové arktické a antarktické vody. U největších kytovců může být vrstva tuku tlustá několik decimetrů (u plejtváků asi 30 cm, u velryb až 50 cm), u menších zástupců několik cm. Tloušťka tukové vrstvy se během života mění, někdy sezónně, zejména v závislosti na dostupnosti potravy. Výrazný úbytek podkožního tuku je spojen také s kojením mláďat. Kromě toho, že funguje jako tepelná izolace a energetická zásoba, hraje tuková vrstva důležitou roli i při formování tvaru těla – např. v zadní části těla je silnější, než by odpovídalo termoregulačním potřebám, protože je tak zachován hydrodynamický vřetenovitý tvar těla snižující odpor vody.[30]

Dýchací soustava

Výdechová fontána pravých velryb má charakter písmene V
Pohled přes hřbet vorvaně na jeho plně otevřenou nozdru umístěnou zřetelně asymetricky na levé straně

Tak jako pro ostatní savce je i pro kytovce jediným zdrojem kyslíku vzduch. Kvůli dýchání jsou tedy nuceni pravidelně navštěvovat hladinu, i když většina jejich ostatních aktivit (shánění potravy, rozmnožování atd.) se může odehrávat hlouběji. Aby byla potřeba vracet se k hladině kvůli nádechu minimalizována, vyvinuly se u kytovců adaptace zvyšující efektivitu dýchání. Samotná relativní kapacita plic (plicní objem vztažený na hmotnost těla) není u kytovců nijak velká. Kapacita plic u kytovců nepotápějících se do velkých hloubek je okolo 7 litrů na 100 kg hmotnosti. (Pro savce je typická hodnota asi 5 až 6 l/kg.) Naopak u druhů dosahujících největších hloubek je kapacita mnohem nižší, asi 2,5 až 3 litry na stejnou hmotnost. Menší objem plic přispívá k vyšší hustotě těla a proto snazšímu sestupu a také omezuje riziko intenzivního rozpouštění plynů v krvi za vysokého tlaku. [29]

Takzvaný dechový objem (tedy objem plynu vyměněného při běžném nádechu) dosahuje u suchozemských savců asi 10–15 % celkové kapacity plic, např. u člověka se běžně udává hodnota asi 0,5 l.[31] U kytovců je dechový objem typicky přes 75 % celkové kapacity plic. Také vitální kapacita (maximální objem vyměněného plynu) je u kytovců větší (přes 90 % celkové kapacity) než u suchozemských savců (okolo 75 % celkové kapacity). Důvodem je především schopnost vytlačit z plic mnohem víc vzduchu při výdechu, než je u savců obvyklé. Hlavní podíl na tom má vyšší elasticita a poddajnost plic a hrudníku (chrupavčitá část žeber je rozsáhlejší, u kosticovců hrudní kost zcela chybí) a také schopnost jejich plic za vysokého okolního tlaku kolabovat (vytěsnit prakticky všechen vzduch z plicních sklípků) bez závažných následků pro organismus. Pro hluboko se nořící kytovce je naopak důležité, aby v plicích nezůstával silně stlačený vzduch, protože za vysokého tlaku by se v jejich krvi rozpouštělo velké množství plynů včetně dusíku, který by při vynořování z krve opět vytěkával a působil tzv. kesonovou nemoc. Dýchací cesty jsou na rozdíl od plic vyztuženy chrupavkou a opatřeny svalovinou, které je udržují průchozí. Právě v dýchacích cestách se může shromažďovat vzduch vytlačený z kolabujících plic.

Další důvod pro zpevnění stěn dýchacích cest je možnost udržet dýchací cesty plně otevřené při velmi prudkém výdechu a nádechu kytovců. Jak bylo řečeno, kytovci při jenom dechovém cyklu (výdechu a nádechu) vyměňují velké objemy plynu, přesto celý cyklus trvá krátce (u delfína skákavého výměna asi 10 l vzduchu trvá jen asi 1/3 sekundy). Rychlost proudění vydechovaného vzduchu může v dýchacích cestách dosahovat hodnot až 200 m/s, při nádechu je asi čtvrtinová. Kytovci většinou začnou vydechovat těsně pod hladinou, prudkým výdechem se zbaví vody v horních cestách dýchacích a v okolí nozder, přičemž vyprodukují typické obláčky až fontány kapiček, v chladných oblastech se na výdechové fontáně podílí i srážející se vodní pára. Tyto výdechové fontány jsou pro jednotlivé druhy typické tvarem, výškou anebo úhlem. Zkušený velrybář nebo pozorovatel je schopen podle výdechové fontány určit na dálku druh kytovce. Pod vodou kytovci dech zadržují, když se potopí, svaly kolem nozder se stáhnou a uzavřou dýchací otvory. Kytovci mají díky teleskopické lebce nozdry na vrcholu hlavy, což jim dává možnost rychleji vydechnout a nadechnout čerstvý vzduch.[32][2]

Cévní soustava

Srdce plejtváka malého

Srdce kytovců svou stavbou nebo poměrem své hmotnosti ku hmotnosti těla nevybočuje z typicky savčího rámce. Tvoří asi 0,3 % až něco málo přes 1 % hmotnosti těla (u větších druhů méně).[29][33] Srdeční rytmus se během ponorů, zejména těch hlubokých, zpomaluje. Např. u běluhy z asi 30 tepů za minutu během dýchání na asi polovinu při ponoření. U velkých kytovců je frekvence i při dýchání na hladině celkově nízká (asi 20 úderů za minutu), po ponoru klesá pod 10 úderů za minutu.[29]

Celkový objem cév (a tedy i krve) je u kytovců zvětšen asi na dvoj- až trojnásobek hodnot běžných u suchozemských zvířat. U aktivních a na dlouhou dobu se potápějících kytovců může být objem krve až kolem 1/4 l na kg hmotnosti (u člověka je to asi 70 ml). V některých orgánech, jako jsou játra nebo slezina, se nacházejí rozsáhlé žilní splavy, objemná je i dolní dutá žíla aj. Aorta je pružná, roztažitelná a je schopná pojmout při systole velké množství krve, která je z ní díky její flexibilitě i během srdeční diastoly průběžně vytlačována do koronárních tepen i dále do těla. Dalším nápadným rysem cévního řečiště kytovců jsou tzv. retia mirabilia (sg. „rete mirabile“), spletité svazky tepének a žilek nacházející se v oblasti stěny hrudního koše pod obratli a mezi žebry. Pojmou velké množství krve a zřejmě regulují tok krve do mozku.[29][33]

Významnou adaptací na dlouhé zadržování dechu je nejen zvýšený krevní objem, ale také vyšší koncentrace pigmentů vázajících kyslík: hemoglobinu v krvi a především myoglobinu přímo ve svalech. Výsledná zásoba kyslíku v prokysličeném těle kytovce je pak v přepočtu na kg hmotnosti asi 2–4 krát vyšší než u člověka. Ve svalech kytovců jsou uloženy i glykogenové zásoby a jejich svaly dobře snášejí i vysoké hladiny kyseliny mléčné, která je odpadním produktem anaerobního metabolismu, takže svaly mohou po čas ponoru fungovat jen s minimálním průtokem krve. Další úspora kyslíku a energie spočívá ve snížení aktivity vnitřních orgánů během delších ponorů.[34]

Plavání a potápění

Výše zmíněná přizpůsobení pohybové, cévní a dýchací soustavy i kůže jsou podřízena potřebě kytovců dobře a s co nejmenší vynaloženou energií plavat a potápět se na dostatečně dlouhou dobu. Někteří plejtváci dokáží v případě potřeby plavat rychlostí až 65 km/h, kosatky až 55 km/h, delfíni až 50 km/h a velryby jen málo přes 10km/h. Velryby se sice obvykle potápějí do hloubek 10 až 50 metrů na dobu ne delší než 10 minut, ale jsou schopny vydržet pod hladinou až hodinu. Plejtváci se potápějí i do 400 metrů na dobu 30 až 60 minut a vorvaň a vorvaňovci sestupují do hloubky až 2 000 metrů na dobu až 60 až 80 minut (k dosažení této hloubky potřebuje vorvaň 20 až 25 minut).[29][34] Rekordmanem v potápění je mezi kytovci i mezi savci vorvaňovec zobatý, u něhož byl doložen ponor do hloubky 2992 m na dobu přes 137 minut.[35]

Nervová soustava, smysly a echolokace

Mozek delfína skákavého (vpravo) ve srovnání s mozkem člověka (vlevo) a nosorožce (uprostřed)

Mozek

Kytovci vykazují velmi vyspělé chování a vysokou inteligenci, což souvisí s pokročilou stavbou mozku i s jeho velkými rozměry. Anatomická i histologická složitost mozku kytovců je srovnatelná s vyššími primáty. Mozek je nápadný výraznou diferenciací jednotlivých částí, přičemž koncový mozek je nejen nápadně velký, ale jeho povrch je také zbrázděn velkým množstvím rýh a záhybů, tj. má vysoký stupeň gyrifikace. Zvláště u delfínovitých je gyrifikace mozku velice výrazná, zbrázdění šedé kůry je dokonce hlubší a členitější než u člověka.[36] Také mozeček je dobře vyvinutou částí kytovčího mozku. Mozek vorvaně je se svými skoro 10 kg vůbec největším mozkem v živočišné říši, mozky velkých plejtváků (p. obrovského a myšoka) jsou jen o málo menší (6–8,5 kg).[22] Relativní hmotnost mozku u velkých kytovců, tedy poměr hmotnosti mozku a celého těla, je však naopak velmi nízká (např. hmotnost mozku vorvaně odpovídá jen asi 0,022 % jeho celkové hmotnosti). U menších druhů je tento poměr mnohem vyšší (např. u delfína skákavého je to již 0,87 %). Lepším vyjádřením velikosti mozku je ale tzv. encefalizační kvocient (EQ) vycházející ze srovnání mnoha druhů savců a vyjadřující, kolikrát je mozek daného druhu větší, než je očekávaná velikost mozku pro savce dané velikosti. U člověka je EQ asi 7,5–8, u šimpanze do 2,5. Mezi kytovci dosahují nejvyšších hodnot EQ zástupci delfínovitých – řada druhů delfínů a plískavic má EQ mezi 4 a 4,5.[37][38]

Zrak

Soubor:Platanista gangetica noaa.jpg
Delfínovci žijící v kalných řekách mají nejmenší oči mezi kytovci. Na obrázku je d. ganžský, který ve špatně vyvinutém oku dokonce postrádá čočku.

Zrak hraje v životě kytovců důležitou roli a je využíván zejména na blízko při lovu, rozpoznávání jedinců v societě, při vyhýbání se překážkám atd. U echolokujících kytovců doplňuje echolokaci a nad vodou (např. při výskocích, ale také v delfináriích při výcviku nebo při krmení házenými rybami) ji plně nahrazuje.[39] Ostrostí vidění jsou kytovci (přinejmenším delfíni, na nichž se provádí velká většina behaviorálních pokusů na kytovcích) srovnatelní s jinými savci (řekněme šelmami jako jsou kočky a psi).[40] V sítnici delfínů jsou tyčinky a jediný druh čípků (ty však tvoří jen maximálně 2 % světločivných buněk), maximum senzitivity je u obou typů fotoreceptorů posunuto spíše k modrému konci světelného spektra (vlnová délka nejúčinněji registrovaného světla je 488 nm u tyčinek, 525 nm u čípků), což je evidentně adaptace na vidění ve vodě, kde je červená složka rychle pohlcována. Zda jsou delfíni schopni vnímat barvy díky odlišným absorbčním maximům obou typů buněk, není jasné. Pokud ano, tak jen ve značně omezeném rozsahu.[39] Relativně malé oči mají kytovci usazeny po stranách hlavy. U delfínů se zorná pole obou očí vpředu a dole mírně překrývají a mohou tak díky binokulárnímu vidění poskytovat lepší trojrozměrné vidění. V oblasti křížení optických nervů se ale na rozdíl od lidí vyskytují pouze křížící se nervová vlákna (taková, která vstupují do hemisféry na druhé straně, než je oko, z něhož vycházejí). Nekřížící se vlákna, která usnadňují vyhodnocení trojrozměrného obrazu, zde chybějí. Kytovci mají na sítnici dvě oblasti s vysokou koncentrací světločivných buněk (tedy oblasti odpovídající žluté skvrně). Jsou lokalizovány tak, že nejostřeji jsou vnímány objekty před hlavou zvířete a objekty po stranách.[39]

Oko kytovců se vyznačuje zesílenou rohovkou a bělimou a mohutnými okohybnými svaly, za okem je v očnici množství cév. Oko je těmito strukturami chráněno jak před mechanickým poškozením, tak před nízkými teplotami. Oční bulva kytovců není kulatá, ale v oblasti rohovky a vnějšího povrchu vůbec je silně zploštělá. Rohovka hraje pod vodou jen malou roli v lomu světla, hlavním světlolomným orgánem je tak čočka, která je u kytovců podobně jako u ryb prakticky kulovitá, opticky mnohem mohutnější než čočka suchozemských obratlovců. Svaly řasnatého tělíska jsou u kytovců zakrnělé a oko tak nemůže akomodovat pomocí změny tvaru čočky. Na akomodaci se podílí deformace celé oční bulvy pomocí okohybných svalů, zejména retraktoru (zatahovače) oka, který u suchozemských savců nenacházíme. Zornice oka je přizpůsobena náhlým změnám intenzity světla během plavání při hladině a ponorů. Z horní části duhovky vyčnívá do prostoru zornice tzv. operkulum, které může být v temnotě zcela vytaženo nahoru a zornice je pak kruhová. Na světle se operkulum stahuje dolů a zornice pak má charakter úzké štěrbiny ve tvaru písmene U. Citlivost oka v temných podmínkách je ještě zvýšena odrazivou vrstvou (tapetum lucidum) za sítnicí. Přestože je čočka kytovců velmi světlolomná, nechová se na vzduchu oko kytovců jako silně krátkozraké, jak by se dalo čekat. Důvodem je relativně plochá rohovka, která jen málo přispívá k lomu světla na rozhraní vzduch / voda. Za pomoci tažení očních bulev okohybnými svaly mírně vpřed, což vede ke snížení nitroočního tlaku a následnému dodatečnému oploštění rohovky a posunu čočky vzad, mohou kytovci zaostřit oko i nad vodou. K ostrosti vzdušného vidění přispívá i silné zúžení štěrbiny zornice v dobrých světelných podmínkách. Oči delfínů se mohou pohybovat (a běžně pohybují) nezávisle na sobě. Také zornicový reflex (stahování operkula) je u obou očí víceméně nezávislý a delfíni také oči běžně na delší dobu střídavě zavírají (jak při pohybu, tak ve spánku).[39]

Sluch a echolokace

Animace produkovaných (zeleně) a přijímaných (červeně) zvukových vln při echolokaci
Běluhy mají na hlavě dobře zřetelný meloun, tukový polštář v přední horní části hlavy napomáhající se směrováním echolokačních ultrazvuků dopředu
Na tomto sagitálním řezu hlavou delfína je dobře zřetelný meloun a další měkké tkáně

Kytovci mají vynikající sluch, přestože postrádají ušní boltce a jejich zvukovody jsou silně zúžené a zčásti neprůchodné (resp. u kosticovců utěsněné mazovou zátkou). Zvuky u nich slouží vnitrodruhové komunikaci, ať už jde o sténání, hvízdaní, mlaskání nebo složité 'zpívání' keporkaka.[2] U ozubených se navíc vyvinula schopnost echolokace, která umožňuje získat analýzou odražených zvukových vln přehled o okolí. Vzhledem k tomu, že pro echolokaci jsou využívány zvukové vlny o krátkých vlnových délkách, které poskytují lepší rozlišovací schopnost, vnímají ozubení kytovci velmi dobře vysokofrekvenční zvuky. Nejcitlivější jsou ke zvukům v rozsahu frekvencí asi 40–80 kHz, ale vnímají zvuky o frekvencích až přes 150 kHz.[41]

Střední a vnitřní ucho kytovců je uloženo v kostěném pouzdře na bázi lebky. Tato sluchová pouzdra jsou v relativně volném kontaktu s většinou ostatních lebečních kostí, navíc jsou kosti v jejich sousedství silně pneumatizovány; tyto vzduchem vyplněné dutiny přispívají ke zvukové izolaci ušního aparátu od zbytku lebky. Způsob, jakým je zvuk veden do oblasti ucha, je lépe pochopen u ozubených. Bubínek, jenž díky své elasticitě napomáhá vyrovnávání tlaku ve středouší, se u nich již nepodílí na přenosu zvukových vibrací na sluchové kůstky. Kladívko je místo toho rozkmitáváno plochou a tenkou, ale pevnou vnější stěnou kosti bubínkové. Na ni jsou zvukové vlny přenášeny zejména dolní čelistí, která je z velké části vyplněna tukem efektivně přenášejícím zvuk. Sluchové kůstky pak rozechvívají oválné okénko vnitřního ucha a tekutinu v hlemýždi podobně jako u jiných savců.[42] U kosticovců nevykazuje spodní čelist adaptace na vedení zvuku a jejich ucho je přizpůsobeno slyšení komunikačních zvuků o nižších frekvencích (desítky Hz až cca 20–30 kHz).[43]

Ozubení kytovci využívají podobně jako např. netopýři tzv. echolokaci (sonar) – vydávají vysokofrekvenční zvuky, naslouchají ozvěnám odraženým od kořisti, překážek atd. a získávají tak informaci o jejich poloze. Ve vodě provozovaná echolokace je někdy označována jako hydrolokace. Schopnost echolokace byla u ozubených kytovců předpokládána od konce 40. let 20. století, množství nepřímých dokladů bylo publikováno během 50. let (vyhýbání se špatně viditelným překážkám z plexiskla, nylonu apod., snadná orientace v kalné vodě nebo za tmy i přímá detekce ultrazvuků vydávaných kytovci atd.). Experimenty s delfíny se zakrytýma očima provedené r. 1961 doprovázené snímáním ultrazvuků definitivně potvrdily využití echolokace.[44][45]

Ultrazvuky („cvakání“) jsou generovány v měkkých tkáních mezi lebkou a vnější nozdrou (čili vznikají de facto v nose, byť silně modifikovaném). Vlastním zvukovým orgánem jsou tzv. zvukové pysky (anglicky „phonic lips“). Vzduch protlačovaný jejich štěrbinou je rozechvívá a tak je produkován zvuk. Vzduch, který prochází při echolokaci přes pysky, se hromadí v jakýchsi vacích (tzv. vestibulární vaky), které v této oblasti odbočují od dýchacích cest, a nemusí být tedy vydechován. Naopak je odsud periodicky přečerpáván zpět do dýchacích cest k opakovanému využití při produkci zvuku. Stojí za připomenutí, že v případě hluboko se nořících kytovců jako jsou vorvani nebo vorvaňovci je vzduch v dýchacích cestách tlakem vody silně stlačen (v kilometrové hloubce asi na 1 % svého původního objemu) a je tedy v podstatě nedostatkovým zdrojem, jehož recyklace výše uvedeným způsobem je vlastně pro až dvouhodinovou echolokaci v temných hlubinách nutná.[46] Zvukové vlny jsou v hlavě kytovce odráženy pomocí kostí a vzduchem vyplněných dutin (na rozhraní vzduch / tkáň se zvuk dobře odráží) a fokusovány tukovými tělesy tak, aby se většina zvukové energie šířila vodou směrem vpřed.[47] Důležitým orgánem je v tomto procesu tzv. meloun, tukem vyplněný orgán tvořící nápadnou „bouli“ v přední horní části hlavy ozubených kytovců. Echolokace je velice účinný nástroj – delfíni (u nichž je zdaleka nejlépe prozkoumána) jsou s její pomocí schopni zaznamenat i předměty o rozměrech kolem 10 cm na vzdálenost přes 100 m. Při experimentech s treskou dlouhou 30 cm ji byli delfíni skákaví zaznamenat na vzdálenost 173 m, sviňuchy jen na vzdálenost 27 m.[40] Pomocí analýzy spektra odražených vln jsou kytovci schopni rozlišovat mezi různými materiály.[41] Ozubení kytovci používají sluch i při pátrání po kořisti, která sama zvuky vydává.[41]

Velmi zajímavě je u ozubených řešen problém křížení dýchacích cest a trávicí trubice v oblasti hrtanu. Chrupavky a měkké tkáně hrtanu včetně modifikované epiglottis jsou trubicovitě protaženy vzhůru a trvale vsunuty do vnitřní nozdry, kde jsou přidržovány kruhovými svaly. Polykaná potrava tento nástavec obchází po straně. U vorvaňů a kogií je tento nástavec vychýlen k levé straně.[48]

Chemorecepce

Otázka chemorecepce u kytovců zůstává otevřená. Studie kytovčích genomů ukazují, že jejich geny pro chuťové receptory jsou z velké většiny nefunkční. Zachovány zůstávají pouze receptory pro slanou chuť, receptory pro sladkou, kyselou, hořkou i pro chuť umami chybí.[49][50] Ani tak ale není jasné, zda kytovci vůbec slanou chuť vnímají – zmíněné receptory se totiž uplatňují nejen v chuťových receptorech, ale také např. v ledvinách, kde se podílejí na osmoregulaci, která je pro kytovce vzhledem k životu v moři zásadní.[50]

Čich u kosticovců není potlačen zcela, ale i tak je redukovaný jak na genetické úrovni, tak na úrovni anatomické – stavba čichových bulbů na spodině mozku naznačuje, že čich se u kosticovců již nepodílí na chování vedoucím k vyhýbání se nepříjemným pachům.[49] Předpokládá se ale, že čich kosticovcům pomáhá při vyhledávání kořisti, tedy velkých aglomerací zooplanktonu.[40] Tento předpoklad potvrzují i behaviorální studie provedené na keporkacích.[51]

U ozubených je situace odlišná, čich je zde potlačen velmi výrazně. Většina genů pro čichové receptory je u nich dysfunkční.[49] Nosní dutiny jsou specializované na produkci vysokofrekvenčních zvuků a čichový epitel není vyvinut, chybí i lamina cribrosa, ploténka čichové kosti mezi stropem nosní dutiny a mozkovnou proděravělá mnoha otvůrky, jimiž u ostatních savců procházejí vlákna čichového nervu.[41] Ozubení postrádají i čichové bulby a další struktury, jimiž jsou v mozku zpracovávány čichové vjemy.[52] Přesto existují experimentální doklady, že delfíni jsou schopni rozlišovat mezi objekty lišícími se zápachem nebo chutí a vnímat kyselé a některé hořké roztoky. Je možné, že na chemorecepci se u ozubených podílejí atypické nervové dráhy jako třeba trojklaný nerv.[41][53]

Mechanorecepce

Vnímání změn tlaku i proudění vody kolem těla je u vodních zvířat včetně kytovců velmi důležité. Proto je u kytovců výborně vyvinut hmat, čemuž odpovídá utváření příslušných oblastí mozku i velké množství hmatových tělísek v kůži.[40] Jsou schopni nejen vyhodnotit pohyb okolní vody ve chvíli, kdy se sami nepohybují, ale i změny tlaku vody proudící kolem nich při vlastním aktivním pohybu.[22] Mechanoreceptory jsou výrazně koncentrovány kolem vnější nozdry (nozder), aby bylo zajištěno, že nádech proběhne až po vynoření. Kolem tlamy kosticovců i jinde po těle najdeme i hmatové chlupy (vibrisy). U ozubených vibrisy nenacházíme (s výjimkou delfínovců), ale i u nich se v prenatálním vývoji objevují. Vypadávají sice záhy po porodu, ale mechanoreceptory, které jsou s nimi asociovány, se zachovávají a zachovávají si mechanoreceptivní funkci.[41] Patrně se podílejí i na elektrorecepci (vnímání slabých elektrických polí produkovaných např. pohybující se kořistí).[54]

Trávicí soustava a potrava

Pohled na řadu kostic v tlamě plejtvákovce, jehož mrtvola byla vyplavena na břeh. Na obrázku je vidět, že kostice jsou na horní čelisti uspořádány za sebou. Na fotografii je zachycen pohled na jejich vnější, nezřasený okraj a horní čelist je tu otočená hřbetní stranou dolů.

Všichni kytovci se živí jinými živočichy (jsou draví), ačkoli pocházejí z převážně býložravých prapředků. Přechod na živočišnou potravu si vyžádal změny v enzymatické výbavě a byl zdokumentován také na biochemické bázi.[55] Co se potravy a jejího získávání týká, existují zásadní rozdíly mezi oběma podskupinami kytovců. Ozubení (např. delfíni, kosatky, vorvani), mají v typickém případě mnoho nerozlišených kuželovitých zubů, jež používají k chytání ryb, hlavonožců a jiných mořských živočichů. Svoji potravu nežvýkají, ale polykají vcelku. Někteří ozubení, zejména specialisti na lov hlavonožců, však mají chrup značně redukovaný (např. narval a vorvaňovci).[2]

Naproti tomu kosticovci (plejtváci, velryby apod.) nemají zuby vůbec (zakládají se jim jen embryonální neprořezávající základy zubů), místo toho mají v ústech četné zřasené rohovinové pláty (může jich být i několik set) – kostice, které ve dvou řadách visí dolů z ústního patra.[22] Tato sada za sebou uspořádaných plátů funguje jako veliký filtr, na němž se zachycují drobnější živočichové (nejčastěji pelagičtí korýši, tzv. krill, ale může jít i o hejnové ryby, některé hlavonožce, planktonní plže aj.).[48] Kosticovci nejprve do otevřených úst pohltí obrovské množství mořské vody i s kořistí, pak vodu za pomoci jazyka a svalů tváří a ústního dna vytlačují přes kostice ven. Na kosticích uvízlé živočichy pak polykají. Plejtváci mají na spodní čelisti značně roztažitelné vaky, do nichž jsou schopni nabrat a poté přefiltrovat až 60–80 m3 vody, což jsou objemy srovnatelné s objemem jejich vlastního těla, někdy jej i překračující.[56]

Žaludek kytovců má složitou stavbu. U kosticovců je trojdílný. První část, předžaludek, zpracovává potravu jen mechanicky. Následuje žláznatý žaludek stavěný a fungující jako typický savčí žaludek: v kyselém prostředí zde fungují trávicí enzymy, hlavně proteázy. Na poslední část žaludku, vrátníkový (pylorický) žaludek, navazuje přední část tenkého střeva, dvanáctník. Ozubení mohou mít pylorický žaludek rozdělený do několika oddílů. V předžaludku se u nich někdy nacházejí gastrolity. Do dvanáctníku vyúsťují vývody slinivky břišní (produkuje trávicí enzymy) a jater (produkují žluč). Žlučník kytovcům chybí. Střevo je u kytovců relativně velmi dlouhé, u ozubených může dosahovat až desetinásobku délky těla (u 17 m dlouhého vorvaně byla zaznamenána délka střeva přes 185 m). U kosticovců je sice střevo relativně kratší (cca pětinásobek délky těla), ale i tak dosahuje u obřích zástupců velkých délek (až 160 m). U kosticovců lze nalézt slepé střevo, ozubeným chybí.[22]

Rozměry

Sviňucha kalifornská je považována za nejmenšího kytovce
Plejtvák obrovský je největší ze všech živočichů

Nejmenší kytovci, delfínovec laplatský, některé plískavice rodu Cephalorhynchus a sviňucha kalifornská, dosahují délky asi 1,5 m. Řada kytovců ale dorůstá velkých až obřích rozměrů. Skoro všichni kosticovci (s výjimkou velrybky malé a plejtváka malého) dosahují běžně délek přes 10 m, v rámci kosticovců tuto hranici přesahuje vorvaň a vorvaňovec velký, blíží se jí vorvaňovec Arnouxův a kosatka dravá.[2]

V současnosti patří mezi kytovce největší (nejtěžší) žijící živočichové na světě, především je to plejtvák obrovský dosahující hmotnosti kolem 180 tun a maximální délky snad až 33,6 metru[57] (v případě maximální délky jde o údaj z roku 1909, o jehož přesnosti panují určité pochyby; každopádně největší plejtváci mohou hranici 30 m přesahovat).[58] Největší kytovci tak hmotností překonávají i největší dosud známé sauropodní dinosaury (ačkoliv ti mohli být s délkou až kolem 40 metrů celkově delší). Žádný dnes známý sauropodní dinosaurus zřejmě nepřesahoval hmotnost 100 tun, zatímco u kytovců ji přesáhly nejméně tři druhy.[59] Po plejtvákovi obrovském je největším a nejtěžším druhem plejtvák myšok, následuje vorvaň obrovský a pravé velryby (velrybovití).[2]

Rozmnožování, ontogeneze, věk

Reprodukce kytovců zachovává základní schéma typické pro savce. Nejnápadnějším rozdílem je to, že zevní orgány samců nebo mléčné bradavky samic nejsou v klidu vůbec patrné a bez bližšího ohledání jsou pohlaví nerozlišitelná, i mezipohlavní rozdíly ve velikostech jsou u většiny druhů nevýrazné.[60] U kosticovců, sviňuch a delfínovců bývají poněkud větší samice, u ostatních kytovců je tomu spíše naopak. Výrazný sexuální dimorfismus vykazuje vorvaň, kde jsou samci výrazně větší než samice.[2][61]

Preparovaný penis plejtváka obrovského

Penis je u kytovců dlouhý (u největších kytovců při erekci až třímetrový), štíhlý, ke konci se zužující. V klidu je však uložen v tzv. penisové štěrbině. Varlata jsou uložena v břišní dutině, nesestupují do šourku. Také samičí pohlavní orgány jsou skryty v podélné urogenitální štěrbině, ve které jsou uloženy i vývody vylučovací soustavy. Směrem do stran od ní jsou další dvě kratší štěrbiny, kde jsou uloženy struky mléčných žláz. Mléko kytovců obsahuje neobvykle vysoký podíl tuku (30–50 procent) a je značně viskozní.[60]

Na tomto mědirytu je zachycen vorvaň, jehož tělo bylo r. 1598 v Holandsku vyplaveno na břen. Po smrti se jeho penis uvolnil z genitální štěrbiny. Ještě dále směrem k ocasu je patrný řitní otvor.

Sociální chování kytovců je velmi různorodé. U některých druhů žijí samci a samice trvale ve skupině, kde panuje přísná hierarchie, jiné žijí v párech, u jiných se samci zdržují odděleně. Období páření je u mnoha druhů kytovců provázeno milostnými hrami, kdy zvířata vyskakují z vody, třou se těly o sebe, hladí se ploutvemi. Vlastní páření probíhá častěji ve vodorovné, ale někdy i ve svislé poloze, obě zvířata se objímají ploutvemi a břichy jsou přitlačena k sobě. Samotná kopulace probíhá krátce, většinou nepřesahuje 30 sekund a opakuje se i několikrát denně.[60]

Březost trvá u většiny druhů 10 až 12 měsíců, někdy déle (u plejtvákovce nebo plejtváka obrovského 13–14 měsíců, u vorvaně a narvala bývá uváděna doba březosti 14 až 15 měsíců, u kulohlavců 12–16 měsíců, u kosatky dravé až 12–17 měsíců.[60][61][62] Samice rodí zpravidla jen jedno dobře vyvinuté mládě, porod probíhá ocasem napřed a bývá rychlý. Matka jej hned nato postrkuje hlavou nad hladinu, aby se mládě poprvé nadechlo, ačkoli to už umí plavat. Stejně tak mu pomáhá nastavováním těla najít struk s mlékem, z kterého mu po uchopení stahem svalů vstřikuje tučné mléko do tlamy. Kosticovci kojí mláďata asi půl roku, ozubení rok nebo i déle. Delší období kojení a péče o mláďata u ozubených může souviset s nutností učit se mnoho sociálních i loveckých dovedností.[61] Mláďata největších samic (u plejtváka obrovského asi 30 m) dosahují při narození délky až 8 metrů a hmotnosti až 2200 kg. Jde o největší novorozence mezi živočichy. I u menších kytovců jsou mláďata relativně velká, dosahují asi 1/3 délky těla matky. Kojená mláďata rostou velice rychle. [60] Pohlavní dospělosti dosahují někteří kytovci po několika letech (asi 3 roky u sviňuch, 4 roky u keporkaků), častěji však asi po 10 letech, pravé velryby až po asi 25 letech. Pohlaví, které dorůstá větší velikosti, dospívá později. To je výrazné např. u vorvaňů, kde samci dospívají asi po 20 letech, samice zhruba v polovičním věku.[61]

Jen výjimečně (plejtvák malý, sviňucha) rodí kytovci mládě každoročně. Častější je dvouletá, případně tříletá perioda mezi jednotlivými mláďaty. U kosticovců jsou porody synchronizovány s migracemi z chladných lovišť do teplých tropických vod, kam tato zvířata plují rodit, patrně kvůli snazší termoregulaci jejich potomků a menšímu riziku predace.[61]

Malé druhy kytovců (např.) sviňuchy se dožívají věku kolem 20 let. Běluhy nebo delfíni asi 40–50 let, vorvaň přes 70 let. Nejvyššího věku se dožívají kosticovci, u plejtváků a velryb se odhaduje nejvyšší věk i přes 100 let.[63] U velryb se na základě nepřímých (a proto nejistých) odhadů věku (denaturace proteinů oční čočky, pozůstatky starých harpun v těle, počet ovulací vaječníku)[64][65] uvažuje až o stopadesátiletých, případně (na základě studia racemizace aspartátu) i dvousetletých kusech.[63] Tyto nejvyšší odhady jsou ale přijímány s nedůvěrou.[64]

Evoluce kytovců

Hledání evolučního prapůvodu kytovců je komplikováno tím, že kytovci jsou kvůli svým adaptacím na vodní prostředí pozměněni takovou měrou, že studium anatomických a fyziologických znaků jejich recentních zástupců neumožňuje spolehlivě odhalit jejich příbuzenské vztahy. O to větší význam pro pochopení evoluce a původu kytovců má studium fosilního materiálu: vymřelí prakytovci vykazují na svých kostrách mnohé znaky, které je spojují s jejich suchozemskými prapředky a které se již u pozdějších zástupců nevyskytují (např. typicky savčí charakter chrupu, méně odvozená stavba lebky, zachovaná kompletní kostra končetin apod.).[66][67] Fosilní nálezy, zejména ty učiněné v tomto tisíciletí, významně přispěly ke zpřesnění našich představ o suchozemských předcích kytovců i o evolučních změnách doprovázejících jejich přizpůsobení plně akvatickému způsobu života.

Kytovci a Mesonychia

Kostra paleocenního masožravého kopytníka Sinonyx, zástupce řádu Mesonychia; chrup mesonychií připomíná chrup prakytovců

Kytovci byli dlouhou dobu spojováni s vymřelou skupinou archaických karnivorních kopytníků ze skupiny Mesonychia. Nápadné podobnosti mezi stoličkami mesonychií a prakytovců i dalších shod na jejich lebce (např. ve stavbě sluchového aparátu) a na postkraniální kostře si jako první všiml Van Valen, který ve své publikaci z r. 1966 velmi přesvědčivě argumentuje ve prospěch hypotézy o blízké příbuznosti obou skupin.[68] Tento názor zůstal velmi populární v podstatě po celý zbytek 20. století.[69][70][71] Výsledky některých modernějších fylogenetických analýz sice stále ukazují Mesonychia jako nejbližší příbuzenstvo kytovců,[67] ale po roce 2000 začíná převládat názor, že mezi oběma skupinami přímá příbuzenská souvislost není.[72][73] Výrazná shoda ve stavbě chrupu je pak vykládána jako konvergence způsobená podobnými potravními návyky.[74][75] Dokonce i způsobem žvýkání, doloženým opotřebením zubů, se obě skupiny zřejmě lišily.[76] Další, podrobnější analýzy zahrnující větší množství fosilních taxonů domněnku o nezávislém původu mesonychií a kytovců čím dál spolehlivěji potvrzují.[66][3][77]

Kytovci jako sudokopytníci

Kladogram znázorňující vzájemnou příbuznost různých skupin kopytníků a karnivorních savců; povšimněte si pozice kytovců mezi sudokopytníky a pozice mesonychií (ze Spauldingové et al., 2009)[66]

Postřeh, že kytovci a sudokopytníci jsou si některými rysy blízcí, byl publikován slavným skotským lékařem Johnem Hunterem už v předdarwinovské době (v r. 1787), kdy se ještě o evolučních vztazích organismů běžně neuvažovalo. Hunter zmínil např. podobnost trávicí soustavy (žaludek tvořený několika oddíly) nebo rozmnožovací soustavy (tvar a charakter dělohy) kytovců a přežvýkavců.[78] Skoro po sto letech (r. 1883) jeho argumentaci zopakoval a rozšířil William Flower, tentokrát v plně evolucionistickém smyslu: kytovci podle něho pocházejí z kopytnatých předků, naopak zamítá hypotézu, že se jedná o příbuzné ploutvonožců a šelem vůbec.[79][80] Názor o blízkém vztahu kytovců a sudokopytníků však mezi zoology 20. století zdaleka nebyl sdílen univerzálně,[81] přestože se objevily i další indicie v jeho prospěch, jako byla například imunologická data (králičí protilátky vykazují zkříženou reakci proti sérovým proteinům kytovců a sudokopytníků).[82] V 60. letech se prosadila myšlenka o blízké příbuznosti kytovců a mesonychyí (viz výše),[68] která sice nebyla v rozporu s vnímáním sudokopytníků jako nejbližší žijící skupiny kytovců (Mesonychia jsou také kopytníci), ale rozhodně nesváděla k hledání prapředků kytovců v rámci sudokopytníků.[81]

V devadesátých letech 20. století se však situace začala měnit poté, co se objevily první vědecké práce založené na analýzách molekulárně biologických dat získaných z různých savčích skupin. Tato porovnání aminokyselinových sekvencí proteinů nebo nukleotidových sekvencí úseků DNA řady savců vedla k neočekávanému závěru, že původ kytovců je nutno hledat uvnitř skupiny sudokopytníků.[83][84][85] Jako sesterská skupina kytovců byli často identifikováni hrochovití.[86][87] Příslušnost kytovců mezi sudokopytníky byla počátkem nového tisíciletí jednoznačně potvrzena i na základě paleontologických dokladů. Sudokopytníci jsou totiž velmi dobře definováni charakterem kotníku, zejména pak charakterem hlezenní kosti (v zoologickém názvosloví nazývané astragalus, v humánní medicíně talus), která je u nich na obou koncích vybavena kladkovým kloubem. V přelomovém roce 2001 byly ve špičkových vědeckých časopisech Nature a Science publikovány dvě nezávislé práce představující nálezy hlezenní kosti prakytovců rodů Pakicetus a Ichthyolestes,[72] resp. rodů Artiocetus a Rodhocetus[75]. Obě studie prokázaly, že kytovci unikátní stavbu hlezenní kosti se sudokopytníky sdílejí. Další paleontologické objevy umožnily nalézt i fosilní sesterskou skupinu kytovců uvnitř řádu sudokopytníků: je to vymřelá primitivní čeleď Raoellidae reprezentovaná zejména kvalitně zachovalým rodem Indohyus. Společně s raoellidy jsou pak kytovci sesterskou větví linie zahrnující hrochovité a jejich vymřelé příbuzné.[3]

Vývoj kytovců

Přechod kytovců od víceméně suchozemských tvorů až k plně vodním organismům je dnes velmi dobře dokumentován řadou fosilií. Kromě odborných publikací se tomuto tématu věnuje i mnoho internetových popularizačních článků[88][89][90][91] (i v češtině)[92][93][94] nebo knih.[95] Nejstarší kytovci (zástupci čeledí Pakicetidae a Ambulocetidae) pocházejí výhradně ze středního eocénu (stupeň ypres) Indie a Pakistánu – dnešní podhůří Himálaje je totiž z velké části utvářeno usazeninami tvořícími původně dno a pobřeží tehdejšího praoceánu Tethys pozvolna tou dobou uzavíraného mezi Asií a Indickým subkontinentem, kde se podle všeho dramatický evoluční příběh kytovců začal odvíjet.[16]

Následující schéma ukazuje předpokládaný sled jednotlivých stádií v evoluci kytovců (nikoli evoluční proměnu starších druhů v druhy mladší); tato stádia jsou zde reprezentována konkrétními rody vyhynulých kytovců. Schematicky znázorňuje průběh vývoje kytovců od nejstarších, ještě tetrapodních prakytovců typu Pakicetus schopných pohybu na souši přes různé stupně přizpůsobení se vodnímu způsobu života až po plně vodní kytovce moderního typu s proudnicovým tvarem těla, plně vyvinutou ocasní ploutví a zakrnělými zadními končetinami (Janjucetus je ukázkou archaického kosticovce, Squalodon ozubeného kytovce) .

Illustrativní znázornění jednotlivých etap evoluce kytovců (Pakicetus » Ambulocetus » Kutchicetus » Protocetus » Janjucetus / Squalodon).
Illustrativní znázornění jednotlivých etap evoluce kytovců (Pakicetus » Ambulocetus » Kutchicetus » Protocetus » Janjucetus / Squalodon).

Raoellidae: Indohyus

Indohyus, rekontrukce vzhledu

Představu o výchozí formě evoluce kytovců poskytují nevelcí (včetně ocasu asi do 80 cm dlouzí) býložraví sudokopytníci rodu Indohyus z čeledi Raoellidae. Jsou doloženi z období středního eocénu z doby před asi 48 Ma (miliony let)[96] z území indického Kašmíru poblíž pakistánských hranic. Měli štíhlé končetiny zakončené kopýtky, dobře uzpůsobené k pohybu po souši, zato nijak zvlášť vhodné pro plavání.[97] Přesto jsou jejich kosti zesílené (mají menší podíl dřeňové dutiny), což je typické pro řadu vodních savců. Takovéto „těžké“ kosti (jejich průměrná hustota je příbytkem kostní tkáně zvýšena) vodním savcům umožňují chodit po dně (jako je tomu u hrochů) nebo pomáhají s potápěním (jako u sirén). Také analýza obsahu izotopu kyslíku 18O ve sklovině nasvědčuje tomu, že Indohyus trávil velké množství času vodě. Zda se ve vodě pásl na vodních rostlinách, nebo zda kvůli pastvě vodu opouštěl, není jasné. Je také možné, že složkou jeho potravy byli příležitostně i menší vodní živočichové.[76][98] Stylem života je Indohyus přirovnáván k současným kančilům vodním: i oni jsou menší býložraví sudokopytníci schopní si zpestřit potravu krabem či leklou rybou, kteří žijí v okolí vody, do níž se potápějí v případě nebezpečí. S kytovci má Indohyus společnou neobvyklou stavbu středního ucha (je přítomno tzv. involucrum, zesílená kostěná schránka chránící středoušní dutinu)[99] a některé rysy chrupu, jako např. za sebou seřazené řezáky či zvýšené korunky zadních třenáků. Indohyus a celá čeleď Raoellidae je považována za sesterskou skupinu kytovců.[98] Zdůrazněme, že tedy nejsou přímými prapředky kytovců, ale jsou těmto prapředkům evolučně i vzhledově blízcí (kytovcům příbuznější zvířata neznáme).

Prakytovci

Schéma evoluce kytovců s vyznačenými obdobími výskytu jednotlivých skupin (z Houssaye et al., 2015)[100]

Všechny fosilní kytovce, kteří nepatří mezi Neoceti (čili zaujímají ve fylogenezi kytovců bazálnější postavení než poslední společný prapředek všech recentních kytovců), označujeme jako prakytovce (Archaeoceti). Prakytovci nejsou monofyletickou, ale parafyletickou skupinou, protože moderní kytovci (Neoceti) se během pozdního eocénu vyvinuli právě z nich. Následuje přehled čeledí prakytovců. Čeleď Protocetidae a možná i Basilosauridae jsou parafyletické.[3]

Pakicetidae
Schematický nákres pakiceta se znázorněnými kostmi, které byly součástí originálního popisu[72]

Kytovci s nejprimitivnější (tj. výchozímu stavu nacházenému u sudokopytníků nejpodobnější) stavbou lebky i končetin jsou řazeni do čeledi Pakicedidae. Jejich nejlépe dokumentovaný rod, Pakicetus, dosahoval zhruba velikosti vlka.[72] Byla to zvířata se štíhlýma nohama stále schopná pohybovat se po souši (například i běhat). Tak jako u indohya byly ale jeho kosti zesílené a mnohem spíše se hodily pro pohyb ve vodním prostředí, kde patrně pakicetus trávil většinu času. Při plavání mohl kromě pádlování nohama, jejichž prsty byly široce roztažitelné a nejspíš spojené plovací blánou, používat i vlnivý pohyb ocasu ve vertikální rovině.[101] Pánev pakiceta byla stále pevně skloubená s křížovou kostí, která srůstala ze čtyř křížových obratlů, a také krk byl zřetelně vytvořen.[72] Pakicetidae jsou považováni za obyvatele sladkovodních bažinatých ekosystémů, kde se však již živili dravě, podle opotřebení zubů lze usuzovat na jejich rybožravost.[99]

Ambulocetidae
Kostra a model ambuloceta v Museo di Storia Naturale di Calci v Pise

Do čeledi Ambulocetidae řadíme kytovce, kteří již měli zkrácené končetiny. Přestože byli schopni pohybu po souši (pánev byla stále ve spojení s dobře vyvinutou křížovou kostí), šlo již o savce silně adaptované na vodní způsob života. Při plavání využívali vlnění těla a ocasu nahoru a dolů, s pohybem pomáhaly i dozadu natažené zadní nohy, styl pohybu tedy mohl být podobný jako u vyder.[99] Ambulocetus, jehož pozůstatky jsou asi 49 Ma staré, byl vázaný na mořské pobřeží, ale studium izotopů kyslíku ve sklovině napovídá, že hlavním zdrojem vody pro jeho metabolismus nebyla voda mořská. Ještě tedy musel pít sladkou vodu nebo v jeho potravě převažovala sladkovodní či suchozemská kořist.[95] Vzhledem k tomu, že jeho očnice byly umístěny vysoko na lebce, mohlo být jeho typickým způsobem lovu podobně jako u krokodýlů číhání na takovou kořist pod vodou.[16] Mezi ambulocetidy patrně patří i nejstarší známá kytovčí fosilie, fragment dolní čelisti starý asi 53,5 Ma pojmenovaný Himalayacetus. Původně byl popsán jako zástupce čeledi Pakicetidae,[102] ale později byl přeřazen do čeledi Ambulocetidae.[103]

Silueta prakytovce rodu Remingtonocetus ve srovnání s člověkem
Remingtonocetidae

Zástupci této čeledi měli silně protažené tělo i čelisti. Její nejstarší zástupci byli současníky ambuloceta, ale další jsou známí i z mladších sedimentů (starých 48–41 Ma).[99] Stále u nich byla zachovaná křížová kost srostlá ze čtyř obratlů. Byli schopni omezeného pohybu na souši, zato se snadno pohybovali ve vodě, kde se hlavním orgánem pohybu stal dlouhý a svalnatý ocas. Obývali mořská pobřeží a v moři také lovili svou kořist.[16][100] Je pravděpodobné, že pro život ve slané vodě byli přizpůsobeni i fyziologicky (dokázali se vyrovnat s vysokou koncentrací solí, aniž by byli závislí na pití sladké vody).[95] Jejich lebka vykazuje adaptace k podvodnímu slyšení (jako je tuková výplň dolní čelisti nebo částečná izolace sluchového aparátu od zbytku lebky), které u primitivnějších čeledí nenacházíme. Statokinetický orgán remingtonocetidů je stavěn podobně jako u pozdějších kytovců (polokruhovité kanálky jsou redukovány).[99]

Protocetidae
Rekonstrukce rodhoceta (Protocetidae)

Protocetidae je parafyletická[3][104] čeleď archaických kytovců, jejíž zástupci jsou již známi z různých kontinentů (Asie, Evropy, Afriky i Severní a Jižní Ameriky). Jejich pozůstatky jsou nalézány v mořských pobřežních sedimentech. Tak jako předchozí čeledi mají stále heterodontní dentici a zubní vzorec 3.1.4.33.1.4.3. U některých zástupců stále nacházíme křížovou kost, ale např. u rodu Rodhocetus jsou křížové obratle volné – to poskytuje jejich páteři výrazně větší flexibilitu a možnost vlnivého pohybu nahoru a dolů. Přes velkou roli ocasu zůstávají u protocetidů zadní nohy stále důležitým orgánem pohybu (přenášelo se na ně vlnění těla, když byly ve vodě nataženy dozadu, nebo jimi protocetidi pádlovali). Ocasní obratle nenesou známky přítomnosti ocasní ploutve typické pro pozdější kytovce,[16] ale ocas byl zřejmě alespoň u některých zástupců zploštělý.[105] Kontakt pánve s páteří je u některých protocetidů poměrně volný (např. u rodu Protocetus je pánev v kontaktu s jediným obratlem) a někdy zcela chybí (např. u rodu Georgiacetus, kde se předpokládá spojení s páteří jen prostřednictvím vazů).[106] Protocetidi nejspíše žili podobným způsobem života jako dnešní ploutvonožci: většinu života trávili ve vodě, ale rozmnožovali se stále ještě na souši, po níž se však pohybovali s obtížemi.[100] Doklady suchozemských porodů jsou však velmi nepřímé (orientace plodu v děloze matky u rodu Maiacetus)[107] a někteří badatelé se domnívají, že alespoň u některých druhů mohly probíhat i ve vodě.[108] Nozdry protocetidů jsou již zřetelně posunuty směrem dozadu.[99]

Basilosauridae
Kostra basilosaurida Dorudon atrox (pohled shora a ze strany)

Basilosauridae jsou pozdně eocenní čeledí blízkou prapředkům dnešních kytovců,[104] případně se z jejích zástupců moderní kytovci (Neoceti) vyvinuli (v takovém případě by čeleď Basilosauridae byla parafyletická)[109][3]. Tak či onak tvoří s moderními kytovci monofyletickou skupinu nazvanou Pelagiceti[110] – žijí totiž pelagicky: způsob jejich života je plně akvatický, nejsou schopni pohybu po souši. Zadní končetina je u basilosauridů sice stále přítomna, ale je silně zakrnělá.[111] Pánev je uložena volně ve svalovině břicha a křížová kost není vyvinuta. Zadní ocasní obratle jsou utvářeny způsobem, který naznačuje přítomnost horizontální ocasní ploutve; ocas je u všech Pelagiceti hlavním orgánem pohybu. Přední končetina je používána jako ploutev, proto je její kostra zploštělá. Na rozdíl od dnešních ozubených kytovců byly zuby basilosauridů stále zřetelně rozlišeny na jednotlivé typy a jejich chrup byl difyodontní – během života byly mléčné zuby nahrazeny trvalým chrupem tak, jak je tomu u drtivé většiny ostatních savců. Poslední horní stolička však u basilosauridů není vyvinuta.[16] Příkladem nespecializovaných basilosauridů je rod Dorudon, rod Basilosaurus je typický silně protaženými obratli a obřími rozměry (dosahoval délky až 20 m). Basilosauridi vymřeli na konci eocénu před asi 34 Ma.

Kosticovci

Rekonstrukce raného kosticovce rodu Janjucetus
Megalodon pronásledující miocenní kosticovce rodu Eobalaenoptera

Dnes žijící kosticovci jsou nápadní absencí zubů. Na získávání potravy se místo nich podílejí rohovinové kostice. Řada fosilních rodů kosticovců však byla ozubená. Nejstarším známým zástupcem kosticovců je Mystacodon ze svrchního eocénu Peru (žil asi před 36,5 Ma)[112]. Jen o málo mladší (stále svrchnoeocenní) je Llanocetus ze Seymourova ostrova při pobřeží Antarktidy[113]. Jejich dentice byla podobná dentici basilosauridů, s nimiž se shodovali i v zubním vzorci (3.1.4.23.1.4.3). Také jejich lebky se podobají lebkám basilosauridů, jsou však širší, nižší a v přední části (před nozdrami) poněkud zkrácené. Tyto úpravy jsou nejspíše spojeny s menším podílem čistě uchopovací funkce čelistí a s vyšší rolí sání při lovu (ve smyslu stržení kořisti proudem vody do úst; nešlo o polykání vody). Právě využívání nasávání většího objemu vody do úst během lovu je považováno za mezistupeň mezi prostým uchvacováním kořisti štíhlými čelistmi předpokládaným u basilosauridů a filtrací potravy z nasáté vody u pozdějších kosticovců.[114] Je možné, že drobnější Mystacodon (měřil necelé 4 m) za pomoci sání lovil menší bentické obratlovce (např. rejnoky doložené z téže lokality) ze dna.[112] Llanocetus mohl dorůstat až 12 m a při lovu větší kořisti tento mechanismus využíval spíše menší měrou.[115] U obou rodů byly zadní končetiny silně redukované, ale stále ještě vyčnívaly z těla. K jejich úplné redukci tedy došlo u kosticovců a ozubených nezávisle.[112]

I během oligocénu se vyskytovali podobně uzpůsobení kosticovci s vyvinutými zuby zastoupení např. rody Janjucetus, Mammalodon nebo Aetiocetus.[16] V případě aetioceta a jemu příbuzných rodů se uvažovalo o současné přítomnosti zubů i krátkých primitivních kostic v jeho tlamě.[116] Nález „pravelryby“ rodu Maiabaena, která postrádala jak zuby, tak kostice, však tomuto scénáři neodpovídá. Jak ukazuje její mohutný jazylkový aparát, Maiabaena stále využívala prudké sání vody při lovu kořisti. Úplná či částečná ztráta zubů a lov za pomoci podtlaku u ústech není mezi kytovci ojedinělý – podobný způsob obživy nacházíme např. u vorvaňovců, narvalů a dalších. Častou kořistí těchto zvířat jsou hlavonožci. Lze se domnívat, že podobně se živila nejen Maiabaena, ale možná i zástupci bezzubé vymřelé čeledi Eomysticetidae sesterské k recentním kosticovcům, u které byla přítomnost kostic předpokládána na základě později zpochybněných nepřímých dokladů a jejich příbuznosti s dnešními kosticovci.[117] Je tedy možné, že kostice se vyvinuly právě jen u té podskupiny kosticovců, jejíž zástupci se dožili dneška (skupina Balaenomorpha). Kosticovců, těch se zuby i bezzubých, během raného miocénu zřetelně ubývá, patrně kvůli zhoršeným klimatickým podmínkám, a většina jejich linií vymírá. Ve středním miocénu (asi v době před 18 Ma) se situace mění a řada rodů balaenomorfních kosticovců, tedy kosticemi vybavených specialistů na filtraci, se začíná hojně objevovat ve fosilním záznamu.[118]

Ozubení

Ilustrace ze Scillova díla z r. 1670; v horní části je nákres fosilního fragmentu čelisti squalodonta

Na rozdíl od kosticovců, u kterých se kostice objevily až relativně pozdě během jejich evoluce, se nápadná společná vlastnost ozubených, totiž schopnost echolokace, objevila velice brzy. Usuzujeme tak jednak ze stavby vnitřního ucha uzpůsobeného k vnímání ultrazvuku a jednak z charakteru lebky, která je asymetrická, konkávní v místě, kde je u recentních kytovců přítomen tukový meloun, a nese i další, detailnější znaky spojené s echolokací.[81][16] Už u nejstaršího popsaného zástupce ozubených (Simocetus) z raného oligocénu byla některá přizpůsobení spojovaná s echolokací ve stavbě lebky dokumentována.[119] Podrobný průzkum stavby vnitřního ucha fosilního novorozence kytovce blízkého druhu Olympiacetus avitus (nebo do tohoto druhu patřícího) však schopnost vnímání ultrazvuku u nejbazálnějších ozubených zpochybňuje. Autoři této studie přicházejí s hypotézou, že měkké tkáně spojované s echolokací pomáhaly u archaických ozubených s produkcí vysokofrekvenčních zvuků, ale ještě ne ultrazvuků. Teprve později se vyvinula pravá echolokace, u oligocenní čeledi Xenorophidae s poněkud odlišnou stavbou lebky možná dokonce konvergentně, nezávisle na ostatních echolokujících ozubených.[120]

Široce rozšířený oligocenní až miocenní rod Squalodon patří mezi nejdéle známé fosilní kytovce. Fragment jeho čelisti se třemi zuby nalezený na Maltě je vyobrazen ve spisu italského malíře a učence Agostina Scilly z r. 1670, v němž Scilla argumentuje ve prospěch myšlenky, že fosilie jsou pozůstatky dávných organismů.[121] Jde o nejstarší dochovanou zmínku o kytovčí fosilii. Vědecky popsán byl Squalodon r. 1840 francouzským přírodovědcem Jean Pierrem de Grateloup, který ale fragment jeho čelisti nalezený ve Francii poblíž Bordeaux považoval za pozůstatek plaza podobného iguanodontovi.[122] Squalodontům, jejichž příslušnost ke kytovcům byla záhy rozpoznána, byly během následujících dekád nekriticky přisuzovány nejrůznější více či méně fragmentární nálezy (často jednotlivé zuby patřící i nepříbuzným kytovcům) nalézané v různých částech světa, což vedlo k poněkud chaotické taxonomii tohoto rodu.[123][124] Squalodontí lebka již byla teleskopická, tzn., že nozdry byly posunuty na temeno. Zuby byly stále rozlišené, ale byly již zmnožené (počet třenáků a stoliček byl zvýšený), šlo tedy o heterodontní a polyodontní dentici. Celkem byly v každém kvadrantu (v každé polovině čelisti) tři řezáky, jeden špičák a za ním dalších 11 či 12 zubů.[125] Squalodon byl považován za příbuzného delfínovců, ale většina moderních fylogenetických analýz jej řadí mimo monofyletickou skupinu zahrnující recentní ozubené kytovce.[126][127][128]

Z mnoha dalších fosilních ozubených stojí za zmínku Livyatan, vymřelý příbuzný vorvaňů, který žil asi před 9–10 Ma (v miocénu). Dorůstal podobné velikosti jako vorvani (patrně až přes 17 m), ale lovil odlišnou kořist, mimo jiné i další kytovce. Pro lov byl vybaven mohutnými zuby v horní i dolní čelisti. Jeho současníkem byl i proslulý obrovský žralok megalodon, nejspíše jeho potravní konkurent.[129] I několik dalších rodů z příbuzenstva vorvaňů (např. Acrophyseter) bylo vybaveno nápadnými zuby, jejich zástupci však nedorůstali takových rozměrů.[130] Zajímavý je také pliocenní Odobenocetops z příbuzenstva narvalovitých. Měl vytvořené asymetrické kly (pravý byl výrazně větší, levý jen rudimentární), které byly skloněny vzad, a vzhledem tlamy i způsobem obživy silně připomínal mrože.[131]

Konvergence v adaptacích kytovců a hrochů

Přestože fosilie jako Indohyus nebo Pakicetus dokládají, že kytovci byli na vodu vázáni od počátku svého vývoje, a přestože silnou vazbu na vodu nacházíme i u hrochů, celou řadu adaptací na toto prostředí získali kytovci a hroši se vší pravděpodobností konvergentně. Jde například o metabolická přizpůsobení svalů a nervové soustavy související s delším zadržováním dechu, o metabolismus tuků aj. Podle rozsáhlé analýzy proteinů si tyto adaptace vytvořili kytovci (a v menší míře i hroši) až po odštěpení od společného předka.[132] Ostatně evoluce hrochů (resp. celé skupiny Hippopotamoidea zahrnující všechny savce bližší hrochovitým nežli kytovcům) probíhala zpočátku z velké části i v čistě terestrických ekosystémech, vodní způsob života dnešních hrochů není v rámci Hippopotamoidea typický.[133] K přechodu k obojživelnému způsobu života u předků dnešních hrochů došlo patrně až během miocénu, dávno po oddělení od kytovčí linie.[134] Stojí za připomenutí, že ani hrošík liberijský není na vodu zdaleka tak silně vázaný jako známější hroch obojživelný. Znaky, jako je značná redukce ochlupení, silná vrstva podkožního tuku, zesílené („těžké“) kosti, uzavíratelné nozdry aj. mohly u obou skupin vznikat paralelně.

Zajímavosti

Pozorování
  • Mládě velryby jižní vypije až 200 litrů mléka každý den.
  • Velryba grónská se může dožít 200 a více let.[135][136]
  • Plejtvákovec šedý migruje z Aljašky do Mexika překonávaje každoročně 20 000 kilometrů.
  • Velikost populace některých velryb není známa s větší přesností než ±50 %.
  • Novozélandští Maorové dodnes uctívají delfíny, ale i velryby jako magická a posvátná zvířata.
  • Za pouhých 80 let 20. století ulovili velrybáři více než 2 miliony velryb. Nízká rozmnožovací schopnost velryb (samice za celý život porodí v průměru jen 7 až 8 mláďat) a snížená genetická rozmanitost populací mnoha druhů velryb by mohly znamenat, že některé druhy jsou odsouzeny k vymření.
  • Mozek velryby (vorvaně) váží až 9,2 kg, slona 6 kg, delfína 1,7 kg, člověka 1,4 kg.
  • Pouhý jazyk plejtváka obrovského váží údajně až 4 tuny, tedy tolik jako dospělý slon.
  • Ambra, látka velice ceněná ve voňavkářském průmyslu, se tvoří v těle samců vorvaňů pravděpodobně jako patologický produkt nějaké nemoci. Nachází se cca ve 4 procentech ulovených zvířat v kusech velkých od několika dekagramů po desítky kilogramů.

Jsou známy případy, kdy kytovci, nejčastěji delfíni, zachránili topící se lidi. Vysvětluje se to tím, že topící se živočich vydává podvědomě specifický úzkostný signál volání o pomoc. Vytlačování topícího se nad hladinu je reflex který je zafixován všem kytovcům. Po narození vytlačují mláďata na hladinu, aby se nadechla, vytlačením nad hladinu stimulují jeho dýchání, dostanou jeho dýchací otvor z vody. Je ovšem pozoruhodné, že delfíni (nevědomky?) poskytují pomoc i cizímu druhu. Kromě záchrany topících se lidí jsou také známy případy aktivní ochrany plavců před žraloky.

Práva pro kytovce

V červenci 2013 rozhodlo indické ministerstvo životního prostředí a lesů povýšit status inteligentních kytovců na „nelidské osoby“ a zakázala aquacentra, vodní show a podobná zařízení, kde by měli být kytovci chováni v zajetí a ryze pro zábavu.[137][138]

Taxonomie

Kytovci a sudokopytníci

Kytovci nejsou samostatný řád savců, ale jen jedna z mnoha skupin sudokopytníků, protože hroši mají mnohem blíž kytovcům než ostatním sudokopytníkům. Kytovci a hrochovití tvoří dohromady infrařád Cetancodonta.

Ochrana

Ochrana kytovců v mezinárodním právu

Ochrana kytovců v evropském právu

  • Nařízení Rady (EHS) č. 348/81 z 20. ledna 1981 o společných předpisech pro dovoz výrobků z velryb a ostatních kytovců
  • Nařízení Rady (ES) č. 338/97 ze dne 9. prosince 1996 o ochraně druhů volně žijících živočichů a planě rostoucích rostlin regulováním obchodu s nimi

Ochrana kytovců v právu ČR

Po vstupu do Evropské unie se členem IWC stala v roce 2005 i Česká republika.[139]

Odkazy

Reference

  1. a b GROVES, Colin; GRUBB, Peter. Ungulate Taxonomy. [s.l.]: The Johns Hopkins University Press, 2011. ISBN 9781421400938. 
  2. a b c d e f g h i j k MAZÁK, Vratislav. Kytovci. 1. vyd. Praha: Státní zemědělské vydavatelství, 1988. 
  3. a b c d e f g GATESY, John, et al. A phylogenetic blueprint for a modern whale. Molecular Phylogenetics and Evolution. 2013. Dostupné online. DOI 10.1016/j.ympev.2012.10.012. 
  4. a b MCGOWEN, Michael R, et al. Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Systematic Biology. 2020-05-01, roč. 69, čís. 3, s. 479–501. Dostupné online. ISSN 1063-5157. DOI 10.1093/sysbio/syz068. PMID 31633766. (anglicky) 
  5. ARISTOTELES. On the Parts of Animals (původním názvem: De Partibus Animalium). Překlad William Ogle. [s.l.]: [s.n.], 2004. Dostupné online. 
  6. ARISTOTELES. History of Animals (původním názvem: Historia Animalium). Překlad Richard Cresswell. [s.l.]: [s.n.], 1897. Dostupné online. 
  7. ARISTOTELES. De Partibus Animalium. [s.l.]: [s.n.] Kapitola Kniha III., část 6. 
  8. LINNÉ, Carl. Systema naturae. 10. vyd. Stockholm: Laurentii Salvii, 1758. Dostupné online. 
  9. GINGERICH, Philip. Great Transformations in Vertebrate Evolution. Příprava vydání Kenneth Dial et al.. [s.l.]: University of Chicago Press, 2015. ISBN 978-0226268255. Kapitola Evolution of Whales from Land to Sea. 
  10. κῆτος - Wiktionary. en.wiktionary.org [online]. [cit. 2021-05-30]. Dostupné online. (anglicky) 
  11. REJZEK, Jiří. Český etymologický slovník. 1. vyd. [s.l.]: Leda, 2001. ISBN 80-85927-85-3. 
  12. ASHER, Robert; HELGEN, Kristofer. Nomenclature and placental mammal phylogeny. BMC Evolutionary Biology. 2010, roč. 10. Dostupné online. DOI 10.1186/1471-2148-10-102. 
  13. WADDEL, Peter, et al. Towards resolving the interordinal relationships of placental mammals. Systematic Biology. 1999, roč. 48. Dostupné online. DOI 10.1093/sysbio/48.1.1. 
  14. PERRIN, William; WÜRSIG, Bernd; THEWISSEN, Johannes. Encyclopedia of Marine Mammals. 2. vyd. [s.l.]: Academic Press, 2008. ISBN 9780080919935. S. 235. 
  15. Perrin, Würsig, Thewissen (2008), s. 1260
  16. a b c d e f g h UHEN, Mark. The Origin(s) of Whales. Annual Review of Earth and Planetary Sciences. 2010, roč. 38. Dostupné online. DOI 10.1146/annurev-earth-040809-152453. 
  17. ZURANO, Juan, et al. Cetartiodactyla: updating a time-calibrated molecular phylogeny. Molecular Phylogenetics and Evolution. 2019. DOI 10.1016/j.ympev.2018.12.015. 
  18. GEISLER, Jonathan, et al. A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evolutionary Biology. 2011. Dostupné online. DOI 10.1186/1471-2148-11-112. 
  19. Mazák (1988), str. 12
  20. Encyclopedia of marine mammals. Příprava vydání William F. Perrin, Bernd Würsig and J.G.M. Thewissen. 2. vyd. Amsterdam: Elsevier/Academic Press, 2009. 1316 s. Dostupné online. ISBN 978-0-08-091993-5, ISBN 0-08-091993-6. OCLC 316226747 
  21. MAAS, Mary. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Bones and Teeth, Histology of. 
  22. a b c d e f g h i j Mazák (1988), kapitola Stavba těla a její zvláštnosti, rozmanitost kytovců
  23. a b ROMMEL, Sentiel; PABST, D. Ann; MCLELLAN, William. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Skull Anatomy. 
  24. ROSTON, Rachel; ROTH, V. Louise. Cetacean Skull Telescoping Brings Evolution of Cranial Sutures into Focus. The Anatomical Record. 2019, roč. 302. Dostupné online. DOI 10.1002/ar.24079. 
  25. FAHLKE, Julia, et al. Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water. Proceedings of the National Academy of Sciences. 2011, roč. 108. Dostupné online. DOI 10.1073/pnas.1108927108. 
  26. COOMBS, Ellen, et al. Wonky whales: the evolution of cranial asymmetry in cetaceans. BMC Biology. 2020, roč. 18. Dostupné online. DOI 10.1186/s12915-020-00805-4. 
  27. LONG, John, et al. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. Journal of Experimental Biology. 1997, roč. 200, čís. 1. Dostupné online. DOI 10.1242/jeb.200.1.65. 
  28. a b ROMMEL, Sentiel; REYNOLDS, John. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Skeleton, Postcranial. 
  29. a b c d e f Mazák (1988), kapitola Jak kytovci plavou a jak se potápějí a dýchají
  30. a b IVERSON, Sara. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Blubber. 
  31. MARIEB, Elaine; HOEHN, Katja. Human Anatomy & Physiology. 9. vyd. [s.l.]: Pearson, 2013. ISBN 978-0-321-74326-8. 
  32. WARTZOK, Douglas. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Breathing. 
  33. a b PONGANIS, Paul. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Circulatory System. 
  34. a b KOOYMAN, Gerald. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Diving Physiology. 
  35. SCHORR, Gregory, et al. First Long-Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius cavirostris) Reveal Record-Breaking Dives. PLOS ONE. 2014. Dostupné online. DOI 10.1371/journal.pone.0092633. 
  36. OELSCHLÄGER, Helmut; OELSCHLÄGER, Jutta. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Brain. 
  37. ROTH, Gerhard; DICKE, Ursula. Evolution of the brain and intelligence. TRENDS in Cognitive Sciences. 2005, roč. 9. DOI 10.1016/j.tics.2005.03.005. 
  38. MARINO, Lori. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Brain Size Evolution. 
  39. a b c d MASS, Alla; SUPIN, Alexander. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Vision. 
  40. a b c d TORRES, Leigh. A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Marine Mammal Science. 2017, roč. 33. Dostupné online. DOI 10.1111/mms.12426. 
  41. a b c d e f KREMERS, Dorothee, et al. Sensory Perception in Cetaceans: Part I—Current Knowledge about Dolphin Senses As a Representative Species. Frontiers in Ecology and Evolution. 2016, roč. 4. Dostupné online. DOI 10.3389/fevo.2016.00049. 
  42. NUMMELA, Sirpa. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Hearing. 
  43. NATIONAL RESEARCH COUNCIL (US) COMMITTEE ON POTENTIAL IMPACTS OF AMBIENT NOISE IN THE OCEAN ON MARINE MAMMALS. Ocean Noise and Marine Mammals. Washington (DC): National Academies Press, 2003. Dostupné online. Kapitola Effects of Noise on Marine Mammals. 
  44. NORRIS, Kenneth, et al. An Experimental Demonstration of Echo-Location Behavior in the Porpoise, Tursiops truncatus (Montagu). Biological Bulletin. 1961, roč. 120. DOI 10.2307/1539374. 
  45. AU, Whitlow. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Echolocation. 
  46. FOSKOLOS, Ilias, et al. Deep-diving pilot whales make cheap, but powerful, echolocation clicks with 50 µL of air. Scientific Reports. 2019, roč. 9. Dostupné online. DOI 10.1038/s41598-019-51619-6. 
  47. HUGGENBERGER, Stefan, et al. Functional Morphology of the Nasal Complex in the Harbor Porpoise (Phocoena phocoena L.). Respiratory Biology. 2009, roč. 292. Dostupné online. DOI 10.1002/ar.20854. 
  48. a b Mazák (1988), kapitola Potrava kytovců a její přijímání
  49. a b c KISHIDA, Takushi, et al. Aquatic adaptation and the evolution of smell and taste in whales. Zoological Letters. Roč. 1, čís. 2015. Dostupné online. DOI 10.1186/s40851-014-0002-z. 
  50. a b ZHU, Kangli, et al. The loss of taste genes in cetaceans. BMC Ecology and Evolution. 2014, roč. 14. Dostupné online. DOI 10.1186/s12862-014-0218-8. 
  51. BOUCHARD, Bertrand, et al. Behavioural responses of humpback whales to food-related chemical stimuli. PLOS ONE. 2019. Dostupné online. DOI 10.1371/journal.pone.0212515. 
  52. THEWISSEN, JGM. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Sensory Biology: Overview. 
  53. KREMERS, Dorothee, et al. Sensory Perception in Cetaceans: Part II—Promising Experimental Approaches to Study Chemoreception in Dolphins. Frontiers in Ecology and Evolution. 2016, roč. 4. Dostupné online. DOI 10.3389/fevo.2016.00050. 
  54. CZECH-DAMAL, Nicole, et al. Electroreception in the Guiana dolphin (Sotalia guianensis). Proceedings of the Royal Society B. 2011, roč. 279. Dostupné online. DOI 10.1098/rspb.2011.1127. 
  55. Guiting Li, Huiyuan Wei, Juanjuan Bi, Xiaoyue Ding, Lili Li, Shixia Xu, Guang Yang & Wenhua Ren (2020). Insights into Dietary Switch in Cetaceans: Evidence from Molecular Evolution of Proteinases and Lipases. Journal of Molecular Evolution, 88: 521–535. doi: https://doi.org/10.1007/s00239-020-09952-2
  56. GOLDBOGEN, Jeremy, et al. Big gulps require high drag for fin whale lunge feeding. Marine Ecology Progress Series. 2007, roč. 349, s. 289–301. Dostupné online. DOI 10.3354/meps07066. 
  57. https://www.smithsonianmag.com/science-nature/todays-whales-are-so-huge-why-arent-they-huger-180969466/
  58. MCCLAIN, Craig, et al. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ. 2015, roč. 3. Dostupné online. DOI 10.7717/peerj.715. 
  59. https://dinosaurusblog.com/2018/07/09/velryby-proti-sauropodum/
  60. a b c d e Mazák (1988), kapitola Rozmnožování, život, sociální vztahy a inteligence kytovců
  61. a b c d e CHIVERS, Susan. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Cetacean Life History. 
  62. REIDENBERG, Joy; LEITMAN, Jeffrey. Encyclopedia of Marine Mammals. Příprava vydání William Perrin, Bernd Würsig, J. Thewissen. 2. vyd. [s.l.]: Academic Press, 2008. Kapitola Cetacean Prenatal Development. 
  63. a b AnAge Database. genomics.senescence.info [online]. [cit. 2021-06-30]. Dostupné online. 
  64. a b HAAG, Amanda. Patented harpoon pins down whale age. Nature. 2007, roč. 227. Dostupné online. DOI 10.1038/news070618-6. 
  65. GEORGE, John, et al. A new way to estimate the age of bowhead whales (Balaena mysticetus) using ovarian corpora counts. Canadian Journal of Zoology. 2011. DOI 10.1139/z11-057. 
  66. a b c SPAULDING, Michelle, et al. Relationships of Cetacea (Artiodactyla) Among Mammals: Increased Taxon Sampling Alters Interpretations of Key Fossils and Character Evolution. PLOS ONE. 2009. Dostupné online. DOI 10.1371/journal.pone.0007062. 
  67. a b O'LEARY, Maureen; GATESY, John. Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics. 2008, roč. 24, čís. 4, s. 397–442. Dostupné online. 
  68. a b VAN VALEN, Leigh. Deltatheridia, a new order of mammals. Bulletin of the American Museum of Natural History. 1966, roč. 132, s. 90–93. Dostupné online. 
  69. ŠPINAR, Zdeněk; BURIAN, Zdeněk. Paleontologie obratlovců. 1. vyd. Praha: Academia, 1984. 
  70. MAZÁK, Vratislav. Kytovci. 1. vyd. Praha: Státní zemědělské vydavatelství, 1988. 
  71. ROČEK, Zbyněk. Historie obratlovců. 1. vyd. Praha: Academia, 2002. ISBN 80-200-0858-6. 
  72. a b c d e THEWISSEN, Johannes, et al. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature. 2001, roč. 413. Dostupné online. DOI 10.1038/35095005. 
  73. GEISLER, Jonathan; UHEN, Mark. Morphological Support for a Close Relationship between Hippos and Whales. Journal of Vertebrate Paleontology. 2003. [www.jstor.org/stable/4524409 Dostupné online]. 
  74. NAYLOR, Gavin; ADAMS, Dean. Are the Fossil Data REally at Odds with the Molecular Data? Morphological Evidence for Cetartiodactyla Phylogeny Reexamined. Systematic Biology. 2001, roč. 50. Dostupné online. 
  75. a b GINGERICH, Philip, et al. Origin of Whales from Early Artiodactyls: Hands and Feet of Eocene Protocetidae from Pakistan. Science. 2001, roč. 293. Dostupné online. DOI 10.1126/science.1063902. 
  76. a b THEWISSEN, Johannes, et al. Evolution of dental wear and diet during the origin of whales. Paleobiology. 2011, roč. 37. Dostupné online. 
  77. HALLIDAY, Thomas, et al. Resolving the relationships of Paleocene placental mammals. Biological Reviews. 2017, roč. 92. Dostupné online. DOI 10.1111/brv.12242. 
  78. HUNTER, John. Observations on the structure and oeconomy of whales. Transactions of the Royal Society of London B. 1787, roč. 77. Dostupné online. 
  79. FLOWER, William. On whales, past and present, and their probable origin. Nature. 1883, roč. 28, s. 199–202. Dostupné online. 
  80. FLOWER, William. On whales, past and present, and their probable origin II. Nature. 1883, roč. 28, s. 226–230. Dostupné online. 
  81. a b c MARX, Felix; LAMBERT, Olivier; UHEN, Mark. Cetacean Paleobiology. 1. vyd. [s.l.]: John Wiley & Sons, Ltd., 2016. ISBN 9781118561270, ISBN 9781118561546. DOI 10.1002/9781118561546. 
  82. BOYDEN, Alan; DEMEROY, Douglas. The relative position of the cetacea among the orders of mammalia as indicated by precipitin tests. Zoologica: scientific contributions of the New York Zoological Society. 1950, roč. 35. Dostupné online. 
  83. IRWIN, David, et al. Evolution of the Cytochrome-B Gene of Mammals. Journal of Molecular Evolution. 1991, roč. 32. Dostupné online. 
  84. GRAUR, Dan; HIGGINS, Desmond. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Molecular Biology and Evolution. 1994, roč. 11. Dostupné online. DOI 10.1093/oxfordjournals.molbev.a040118. 
  85. SHIMAMURA, Natsuru, et al. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature. 1997, roč. 388. Dostupné online. DOI 10.1038/41759. 
  86. GATESY, John, et al. Evidence from Milk Casein Genes that Cetaceans are Close Relatives of Hippopotamid Artiodactyls. Molecular Biology and Evolution. 1996, roč. 13. Dostupné online. DOI 10.1093/oxfordjournals.molbev.a025663. 
  87. GATESY, John, et al. Stability of Cladistic Relationships between Cetacea and Higher-Level Artiodactyl Taxa. Systematic Biology. 1999, roč. 38. Dostupné online. DOI 10.1080/106351599260409. 
  88. https://www.darwinsdoor.co.uk/prehistoricplanet/the-evolution-of-cetaceans-a-whale-of-a-time.html
  89. https://science.thewire.in/the-sciences/whale-evolution-india-pakistan-fossils-indohyus-pakicetus-remingtonocetus-basilosaurus/
  90. BLACK, Riley. How Did Whales Evolve?. Smithsonian Magazine [online]. 2010 [cit. 2021-05-22]. Dostupné online. 
  91. THEWISSEN, Johannes. The evolution of whales. Earth Archives [online]. [cit. 2021-05-22]. Dostupné online. 
  92. https://sites.google.com/site/svetpaleontologie/evoluce/evoluce-kytovcua---1-cast---podrad-archaeoceti-prakytovci
  93. https://sites.google.com/site/svetpaleontologie/evoluce/evoluce-kytovcua---2-cast---podrad-odontoceti-ozubeni
  94. VOŘÍŠEK, Lukáš. Velryby dříve měly 4 nohy a běhaly po souši, jak u nich probíhala evoluce?. inSmart [online]. 2019 [cit. 2021-05-22]. Dostupné online. 
  95. a b c THEWISSEN, Johannes. The Walking Whales. 1. vyd. Oakland: University of California Press, 2014. ISBN 978-0-520-95941-5. 
  96. SAMPLE, Ian. From Bambi to Moby Dick: how a small deer evolved into the whale. The Guardian [online]. 2007 [cit. 2021-05-19]. Dostupné online. 
  97. COOPER, Lisa, et al. Postcranial morphology and locomotion of the Eocene raoellid Indohyus (Artiodactyla: Mammalia). Historical Biology. 2011, roč. 24, čís. 3. Dostupné online. DOI 10.1080/08912963.2011.624184. 
  98. a b THEWISSEN, Johannes, et al. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature. 2007. Dostupné online. DOI 10.1038/nature06343. 
  99. a b c d e f THEWISSEN, Johannes. From Land to Water: the Origin of Whales, Dolphins, and Porpoises. Evolution: Education and Outreach. 2009, roč. 2. Dostupné online. 
  100. a b c HOUSSAYE, Alexandra, et al. Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure. PLOS ONE. 2015. Dostupné online. DOI 10.1371/journal.pone.0118409. 
  101. MADAR, Sandra. The Postcranial Skeleton of Early Eocene Pakicetid Cetaceans. Journal of Paleontology. 2007, roč. 81. [176:TPSOEE2.0.CO;2/THE-POSTCRANIAL-SKELETON-OF-EARLY-EOCENE-PAKICETID-CETACEANS/10.1666/0022-3360(2007)81[176:TPSOEE]2.0.CO;2.short Dostupné online]. DOI 10.1666/0022-3360(2007)81[176:TPSOEE]2.0.CO;2. 
  102. BAJPAI, Sunil; GINGERICH, Philip. A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proceedings of the National Academy of Sciences. 1999, roč. 95. Dostupné online. DOI 10.1073/pnas.95.26.15464. 
  103. THEWISSEN, Johannes; WILLIAMS, Ellen. The Early Radiations of Cetacea (Mammalia): Evolutionary Pattern and Developmental Correlations. Annual Review of Ecology and Systematics. 2002, roč. 33. Dostupné online. DOI 10.1146/annurev.ecolsys.33.020602.095426. 
  104. a b MARTÍNEZ-CÁCERES, Manuel, et al. The anatomy and phylogenetic affinities of Cynthiacetus peruvianus, a large Dorudon-like basilosaurid (Cetacea, Mammalia) from the late Eocene of Peru. Geodiversitas. 2017, roč. 39. Dostupné online. DOI 10.5252/g2017n1a1. 
  105. LAMBERT, Olivier, et al. An Amphibious Whale from the Middle Eoceneof Peru Reveals Early South Pacific Dispersalof Quadrupedal Cetaceans. Current Biology. 2019, roč. 29. Dostupné online. DOI 10.1016/j.cub.2019.02.050. 
  106. HULBERT, Richard. The Emergence of Whales. Příprava vydání Thewissen, Johannes. New York: Springer Science+Business Media, 1998. ISBN 978-1-4899-0159-0. Kapitola Postcranial Osteology of the North American Middle Eocene Protocetid Georgiacetus. 
  107. GINGERICH, Philip, et al. New Protocetid Whale from the Middle Eocene of Pakistan: Birth on Land, Precocial Development, and Sexual Dimorphism. Plos ONE. 2009. Dostupné online. DOI 10.1371/journal.pone.0004366. 
  108. GEISLER, Jonathan. Whale Evolution: Dispersal byPaddle or Fluke. Current Biology. 2019, roč. 29. Dostupné online. DOI 10.1016/j.cub.2019.03.005. 
  109. SPAULDING, Michelle, et al. Relationships of Cetacea (Artiodactyla) Among Mammals: Increased Taxon Sampling Alters Interpretations of Key Fossils and Character Evolution. Plos ONE. 2009. Dostupné online. DOI 10.1371/journal.pone.0007062. 
  110. UHEN, Mark. New protocetid whales from Alabama and Mississippi, and a new Cetacean clade, Pelagiceti. Journal of Vertebrate Paleontology. 2008, roč. 28. Dostupné online. DOI 10.1671/0272-4634%282008%2928%5B589%3ANPWFAA%5D2.0.CO%3B2. 
  111. GINGERICH, Philip, et al. Hind Limbs of Eocene Basilosaurus: Evidence of Feet in Whales. Science. 1990, roč. 249. Dostupné online. DOI 10.1126/science.249.4965.154. 
  112. a b c LAMBERT, Olivier, et al. Earliest Mysticete from the Late Eocene of Peru Sheds New Light on the Origin of Baleen Whales. Current Biology. 2017, roč. 27. Dostupné online. DOI 10.1016/j.cub.2017.04.026. 
  113. MITCHELL, Edward. A New Cetacean from the Late Eocene La Meseta Formation Seymour Island, Antarctic Peninsula. Canadian Journal of Fisheries and Aquatic Sciences. 1989, roč. 46. DOI 10.1139/f89-273. 
  114. FORDYCE, Ewan; MARX, Felix. Gigantism Precedes Filter Feeding in Baleen Whale Evolution. Current Biology. 2018, roč. 28. Dostupné online. DOI 10.1016/j.cub.2018.04.027. 
  115. MARX, Felix, et al. Gigantic mysticete predators roamed the Eocene Southern Ocean. Antarctic Science. 2019, roč. 31. Dostupné online. DOI 10.1017/S095410201800055X. 
  116. DEMÉRÉ, Thomas, et al. Morphological and Molecular Evidence for a Stepwise Evolutionary Transition from Teeth to Baleen in Mysticete Whales. Systematic Biology. 2008, roč. 57. Dostupné online. DOI 10.1080/10635150701884632. 
  117. PEREDO, Carlos, et al. Tooth Loss Precedes the Origin of Baleen in Whales. Current Biology. 2018, roč. 28. Dostupné online. DOI 10.1016/j.cub.2018.10.047. 
  118. MARX, Felix, et al. Like phoenix from the ashes: How modern baleen whales arose from a fossil “dark age”. Acta Palaeontologica Polonica. 2019, roč. 64. Dostupné online. DOI 10.4202/app.00575.2018. 
  119. FORDYCE, Ewan. Simocetus rayi (Odontoceti: Simocetidae) (new species, new genus, new family), a bizarre new archaic Oligocene dolphin from the eastern North Pacific. Smithsonian Contributions to Paleobiology. 2002, roč. 93. Dostupné online. 
  120. RACICOT, Rachel, et al. Evidence for convergent evolution of ultrasonic hearing in toothed whales (Cetacea: Odontoceti). Biology Letters. 2019, roč. 15. Dostupné online. DOI 10.1098/rsbl.2019.0083. 
  121. SCILLA, Agostino. La vana speculazione disingannata dal senso : lettera risponsiva circa i corpi marini, che petrificati si trovano in varii luoghi terrestri. Neapol: Andrea Colicchia, 1670. Dostupné online. 
  122. DE GRATELOUP, Jean Pierre. Description d'un fragment de machoire fossile d'un genre nouveau de reptile (saurien) : de taille gigantesque voison de l'iguanodon, trouvé dans les grès marins à Léognan près Bordeaux (Gironde). Actes de l'Academie Royale (Nationale) des Sciences, Belles-Lettres et Arts de Bordeaux. 1840. Dostupné online. DOI 10.5962/bhl.title.5039. 
  123. FORDYCE, Ewan. Waipatia maerewhenua, new genus and new species (Waipatiidae, new family), an archaic Late Oligocene dolphin (Cetacea: Odontoceti: Platanistoidea) from New Zealand. Proceedings of the San Diego Society of Natural History. 1994, roč. 29. Dostupné online. DOI 10.5962/bhl.part.10662. 
  124. DOOLEY, Alton. A review of the eastern north American Squalodontidae (Mammalia: Cetacea). Jeffersoniana. 2003, roč. 11. Dostupné online. 
  125. AUGUSTA, Josef. Divy prasvěta. 1. vyd. Praha: Toužimský a Moravec, 1942. Kapitola Kytovci pravěkých moří. 
  126. VÉLEZ-JUARBE, Jorge. A new stem odontocete from the late Oligocene Pysht Formation in Washington State, U.S.A.. Journal of Vertebrate Paleontology. 2017. Dostupné online. DOI 10.1080/02724634.2017.1366916. 
  127. CHURCHILL, Morgan, et al. The Origin of High-Frequency Hearing in Whales. Current Biology. 2016, roč. 26. Dostupné online. DOI 10.1016/j.cub.2016.06.004. 
  128. TANAKA, Yoshihiro; FORDYCE, Ewan. Fossil Dolphin Otekaikea marplesi (Latest Oligocene, New Zealand) Expands the Morphological and Taxonomic Diversity of Oligocene Cetaceans. PLOS ONE. 2014. Dostupné online. DOI 10.1371/journal.pone.0107972. 
  129. LAMBERT, Olivier, et al. The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature. 2010, roč. 466. Dostupné online. DOI 10.1038/nature09067. 
  130. LAMBERT, Olivier, et al. Macroraptorial sperm whales (Cetacea, Odontoceti, Physeteroidea) from the Miocene of Peru. Zoological Journal of the Linnean Society. 2016, roč. 179. Dostupné online. DOI 10.1111/zoj.12456. 
  131. DE MUIZON, Christian. Walrus-like feeding adaptation in a new cetacean from the Pliocene of Peru. Nature. 1993, roč. 365. Dostupné online. DOI 10.1038/365745a0. 
  132. TSAGKOGEORGA, Georgia, et al. A phylogenomic analysis of the role and timing of molecular adaptation in the aquatic transition of cetartiodactyl mammals. Royal Society Open Science. 2015, roč. 2. Dostupné online. DOI 10.1098/rsos.150156. 
  133. Alexandra Houssaye, Florian Martin, Jean-Renaud Boisserie & Fabrice Lihoreau (2021). Paleoecological Inferences from Long Bone Microanatomical Specializations in Hippopotamoidea (Mammalia, Artiodactyla). Journal of Mammalian Evolution (advance online publication). doi: https://doi.org/10.1007/s10914-021-09536-x
  134. BOISSERIE, Jean-Renaud, et al. Evolving between land and water: key questions on the emergence and history of the Hippopotamidae (Hippopotamoidea, Cetancodonta, Cetartiodactyla). Biological Reviews. 2011, roč. 86. DOI 10.1111/j.1469-185X.2010.00162.x. 
  135. Jagd-Fund: Uralte Harpune in totem Wal entdeckt. Spiegel Online. 2007-06-13. Dostupné online [cit. 2019-02-10]. 
  136. GMEINWIESER, Sabine. Tiere: Grönlandwal mit 211 Jahren von Walfängern getötet. www.welt.de. 2007-05-25. Dostupné online [cit. 2019-02-10]. 
  137. India Declares Dolphins "Non-Human Persons", Dolphin shows BANNED
  138. Indie vyhlašuje delfíny za “nelidské osoby”, show s delfíny zakázány. dolezite.sk [online]. [cit. 2014-03-06]. Dostupné v archivu pořízeném dne 2014-03-05. 
  139. Česká úřednice odlétá bojovat za velryby

Literatura

Související články

Externí odkazy