Jupiter (planeta)

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Jupiter.jpg

Jupiter z pohledu sondy Voyager 2 (1979)

Elementy dráhy
(Ekvinokcium J2000,0)
Velká poloosa 778 412 027 km
5,203 363 01 AU
Obvod oběžné dráhy 4,888×109 km
32,675 AU
Výstřednost 0,048 392 66
Perihel 740 742 598 km
4,951 558 43 AU
Afel 816 081 455 km
5,455 167 59 AU
Perioda (oběžná doba) 4335,3545 d
(11,87 a)
Synodická perioda 398,86 d
Orbitální rychlost
- maximální
- průměrná
- minimální

13,705 km/s
13,050 km/s
12,440 km/s
Sklon dráhy
- k ekliptice
- ke slunečnímu rovníku

1,305 30°
6,09°
Délka vzestupného uzlu 100,556 15°
Argument šířky perihelu 274,197 70°
Počet
přirozených satelitů
65
Fyzikální charakteristiky
Rovníkový průměr 142 984 km
(11,209 Zemí)
Polární průměr 133 709 km
(10,517 Zemí)
Zploštění 0,064 87
Povrch 6,14×1010 km2
(120,5 Zemí)
Objem 1,431×1015 km3
(1321,3 Zemí)
Hmotnost 1,899×1027 kg
(317,8 Zemí)
Průměrná hustota 1,326 g/cm3
Gravitace na rovníku 23,12 m/s2
(2,358 G)
Úniková rychlost 59,54 km/s
Perioda rotace 0,413 51 d
Rychlost rotace 45 262 km/h
(na rovníku)
Sklon rotační osy 3,13°
Rektascenze
severního pólu
268,05°
(17 h 52 min 12 s)
Deklinace 64,49°
Albedo 0,52
Povrchová teplota
- min
- průměr
- max

-163 °C K
-121 °C K
? K
Charakteristiky atmosféry
Atmosférický tlak 20–200 kPa
Vodík ~86 %
Helium ~14 %
Methan 0,1 %
Vodní páry 0,02 %
Amoniak 0,02 %
Ethan 0,0002 %
Fosfin 0,0001 %
Sulfan <0,0001 %



Astronomický symbol Jupitera

Jupiter je největší planeta sluneční soustavy, v pořadí pátá od Slunce. Sluneční soustava je někdy popisována jako dvojsystém skládající se ze Slunce a Jupiteru jako hlavních dvou členů a dalších menších těles. Jupiter, Saturn, Uran a Neptun jsou označovány jako plynní obři či planety jupiterského typu. Jupiter má hmotnost přibližně jedné tisíciny Slunce, což je okolo dva a půl krát více než všechny ostatní planety sluneční soustavy dohromady. Planeta je pojmenována po římském bohu Jovovi (v 1. pádě Jupiter).[1] Symbolem planety je stylizované znázornění božského blesku (v Unicode: ♃). Jupiter byl pozorován již od pradávna, při pohledu ze Země má Jupiter magnitudu -2,8, což z něj činí třetí nejjasnější objekt na noční obloze po Měsíci a Venuši (v některých případech se před Jupiter v jasnosti dostane Mars, když je v ideální pozici během svého oběhu vůči Zemi).

Okolo planety se nacházejí slabé prstence, které jsou ze Země špatně viditelné. Současně ho obklopuje silné radiační pole. Při pohledu z okolního vesmíru jsou viditelné horní vrstvy atmosféry rozčleněny v závislosti na planetární šířce do různě barevných pruhů a skvrn, které jsou atmosférickými bouřemi. Nejznámější takovouto bouří je Velká rudá skvrna, která je známá minimálně od 17. století. Dosud není přesně známo, jaké vrstvy planetu tvoří, jelikož současné technické prostředky neumožňují její průzkum do větší hloubky. Předpokládá se, že Jupiter je složen převážně z vodíku, hélia a organických sloučenin. Je možné, že planeta má tvrdé kamenné jádro tvořené těžšími prvky.

Jupiter byl prozkoumán několika automatickými sondami, nejčastěji na začátku programu Pioneer a programu Voyager, kdy všechny tyto sondy kolem planety proletěly. Později k Jupiteru zamířila sonda Galileo, která kolem planety po necelých osm let obíhala. Nejnovější data pocházejí ze sondy New Horizons, která v únoru 2007 použila planetu pro zvýšení rychlosti na své cestě k Plutu. V současnosti se plánují další mise do soustavy Jupiteru, které by měly za cíl prozkoumat převážně hypotetické oceány pod ledovou kůrou jeho měsíce Europy. Jupiter má nejméně 63 měsíců. První z nich objevil v roce 1610 Galileo Galilei a nezávisle na něm pravděpodobně i Simon Marius. Jde o čtyři velké měsíce Io, Europu, Ganymed a Callisto (nyní známé jako Galileovy měsíce), u jejichž nebeského pohybu bylo zřetelné, že jeho centrem není Země. Tato skutečnost byla hlavním bodem obhajoby Koperníkovy heliocentrické teorie o pohybu planet; Galileiho vyhlášení podpory Koperníkově teorii jej dostalo do problémů s inkvizicí.

Vznik a vývoj planety[editovat | editovat zdroj]

Jupiter vznikl z protoplanetárního disku před 4,6 až 4,7 miliardami let. Existují dvě hlavní teorie, jak mohly velké plynné planety vzniknout a zformovat se do současné podoby. Jedná se o teorii akrece[2] a teorii gravitačního kolapsu.[3] Teorie akrece předpokládá, že se v protoplanetárním disku postupně slepovaly drobné prachové částice, čímž začaly vznikat větší částice až posléze balvany. Neustálé srážky těles vedly k jejich narůstání, až vznikla tělesa o velikosti několik tisíc kilometrů. Tato velká železokamenitá tělesa se stala zárodky terestrických planet. Předpokládá se, že podobná tělesa mohla vzniknout i ve vzdálenějších oblastech sluneční soustavy, kde vlivem velké gravitace začala strhávat do svého okolí plyn a prach, který se postupně začal nabalovat na pevné jádro, až planeta dorostla do dnešní velikosti.[4] Protože úniková rychlost na povrchu Jupiteru dosahuje 59,54 km/s, což daleko převyšuje tepelnou rychlost molekul, zůstalo na něm nejspíše původní složení atmosféry, kterou nabalil už během vzniku z protoplanetárního disku.[5]

Teorie gravitačního kolapsu na druhou stranu předpokládá, že velké planety nevznikaly postupným slepováním drobných částic, ale poměrně rychlým smrštěním z nahuštěného shluku v zárodečném disku podobným způsobem, který je znám při vzniku hvězd. Podle teorie několika gravitačních kolapsů, jejímž autorem je Alan BossCarnegie Institution of Washington, byl vznik plynných obrů krátký a v případě Jupiteru trval jen několik století.[3]

Vznik velkých Jupiterových měsíců proběhl pravděpodobně stejným způsobem, jako vznikaly kamenné planety. Jelikož je Jupiter poměrně blízko od Slunce, vystoupila teplota na povrchu měsíců na vysoké hodnoty, čímž došlo k úniku lehce tavitelných látek z původního disku okolo vznikající planety.

Fyzikální a chemické vlastnosti[editovat | editovat zdroj]

Složení[editovat | editovat zdroj]

Svrchní atmosféra Jupiteru je tvořena z 88 až 92 % vodíkem a zbylých 8 až 12 % připadá na helium vzhledem k poměru plynných molekul těchto plynů. Jelikož je ale molekula hélia přibližně dvakrát hmotnější než molekula vodíku,[pozn. 1] složení se změní, pokud se vyjádří v hmotnostních procentech na poměr 75 % připadajících na vodík a 24 % na hélium s tím, že zbývající procento připadne na ostatní prvky obsažené v atmosféře planety. Vnitřní složení planety je rozdílné, jelikož zde dochází k nárůstu ostatních prvků vůči zastoupení vodíku a hélia. Složení v nižších vrstvách je pak 71 hmotnostních % vodíku, 24 hmotnostních % hélia a 5 hmotnostních % ostatních prvků. Atmosféra obsahuje stopová množství methanu, vodní páry, čpavku a křemičitanů. Vyjma těchto hojnějších sloučenin obsahuje atmosféra taktéž malé množství uhlíku, ethanu, sulfanu, neonu, kyslíku, fosforu a síry. Nejvzdálenější vrstva atmosféry obsahuje ledové krystalky zmrzlého čpavku.[6][7] Měření v infračerveném a ultrafialovém světle přinesly údaje, že se v atmosféře nachází i malé množství benzenu a byly objeveny i další uhlovodíky.[8]

Atmosférický poměr mezi vodíkem a héliem je velice blízko teoretickému složení původní mlhovině, ze které se zformovala celá sluneční soustava. Nicméně neon obsažený ve svrchní atmosféře je zastoupen pouze poměrem 20 částic na milión, což je okolo desetiny průměrné hodnoty u Slunce.[9] Zastoupení hélia je nízké, dosahuje pouze 80 % zastoupení oproti Slunci. Nízký podíl hélia může být výsledkem srážkové činnosti hélia, kdy se takto dostává do vnitřních oblastí planety.[10] Průměrné zastoupení těžších plynů v atmosféře Jupiteru je přibližně dvakrát až třikrát hojnější než u Slunce.

Jak ukazují spektroskopická měření, Saturn je složením nejspíše podobný Jupiteru, naproti tomu další plynní obři jako Uran a Neptun mají relativně mnohem méně vodíku a hélia.[11] Nicméně detailnější data o složení atmosféry a zastoupení těžších prvků u plynných obrů vyjma Jupiteru chybí, jelikož jejich atmosféry zatím nebyly prozkoumány žádnými atmosférickými sondami.

Hmotnost[editovat | editovat zdroj]

Ilustrativní srovnání velikostí mezi Jupiterem a Zemí. Na obrázku je zachycena i Velká rudá skvrna.

Jupiter je téměř 2,5× hmotnější než všechny ostatní planety sluneční soustavy dohromady.[12] Jeho hmotnost ovlivňuje výrazně těžiště (barycentrum) sluneční soustavy. Odchylka způsobená Jupiterem je 742 792 km, čímž by toto těžiště vysouval mimo těleso Slunce.[13] Díky působení ostatních těles sluneční soustavy (především ostatních plynných obrů) je ale těžiště sluneční soustavy 36% času uvnitř Slunce[13] a střední vzdálenost Slunce od tohoto těžiště je 0,00228 AU.[14] Je 317,81×[15] hmotnější než Země, rovníkový poloměr má 11,21×[15] větší a objem 1321×[16] větší než Země. Často je označován za „nepovedenou hvězdu“, i když toto srovnání je značně nepřesné.[17] To, že nalezené extrasolární planety jsou mnohem hmotnější než Jupiter, je způsobeno výběrovým efektem, protože hmotnější průvodci jiných hvězd se současnými prostředky snáze detekují. Naproti tomu velikost poloměru podobné planety už prakticky nezávisí na její hmotnosti, protože větší hmotnost způsobuje pouze další smršťování (dokud nedojde k nastartování termonukleárních reakcí). I přes to, že Jupiter emituje více záření, než dostává, nepatří mezi hnědé trpaslíky, jadernou syntézu sice provázejí specifické spektrální čáry, nicméně v každém případě by potřeboval být alespoň 75×[18] hmotnější, aby se mohl stát hnědým trpaslíkem.

Jupiter má ve srovnání se Zemí menší hustotu. I přes to, že Jupiterův objem je 1321× větší než objem Země, je pouze 318× hmotnější než Země.[16][19] „Hmotnost Jupiteru“ (MJ or MJup) je často používána jako základní jednotka pro popisování hmotnosti jiných těles, a to hlavně extrasolárních planet a hnědých trpaslíků. Například extrasolární planety HD 209458 b má hmotnost 0,69 MJ, naproti tomu COROT-7b má hmotnost pouze 0,015 MJ.[20]

Teoretické modely naznačují, že Jupiter měl dříve mnohem větší hmotnost, než má dnes, a že se planeta zmenšuje. Pro malé změny hmotnosti by se průměr planety měnil jen nepatrně. Pokud by hmotnost přesáhla hmotnost čtyř Jupiterů, vnitřní oblasti planety by byly natolik stlačené vlivem působící gravitace, takže by vlastně došlo k tomu, že by planeta byla ve výsledku menší, než je dnes.[21] Tato skutečnost vedla některé astronomy k tomu, aby o Jupiteru začali referovat jako o nepovedené hvězdě, i když není známo, jestli procesy vedoucí ke vzniku planet jako Jupiter jsou stejné jako procesy formující vícehvězdné systémy.

Aby Jupiter zažehl termonukleární reakci vedoucí ke spalování vodíku a proměně na hvězdu, musel by být přibližně 75× hmotnější. Nejmenší známí červení trpaslíci jsou pouze o 30 % větší než Jupiter.[22][23] I vzhledem k této skutečnosti[zdroj?] Jupiter vyzařuje více tepla, než dostává od Slunce. Množství tepla vznikajícího uvnitř planety je téměř rovné množství slunečního záření, které od Slunce obdrží.[24] Toto přídavné teplo vzniká Kelvin-Helmholtzovým mechanismem vlivem adiabatické kontrakce. Tento proces vede k planetárnímu smršťování rychlostí přibližně 2 cm za rok.[25] V době vzniku byl Jupiter mnohem teplejší a jeho poloměr byl přibližně dvakrát větší, než je tomu dnes.[26]

Vnitřní stavba[editovat | editovat zdroj]

Průřez Jupiterem ukazuje jeho vnitřní stavbu s kamenným jádrem obklopeným silnou vrstvou kovového vodíku

Jupiter tvoří husté planetární jádro různého složení prvků obklopeného vrstvou tekutého kovového vodíku s obsahem hélia a atmosférou molekulárního vodíku.[25] Za tímto zjednodušením se ale stále skrývá řada tajemství a nejasností. Jádro se často popisuje jako kamenné, ale jeho skutečné detailnější složení je neznámé jako vlastnosti materiálů, které by ho měly tvořit za tlaků a teplot, jež v jádře této obří planety musí panovat. V roce 1997 byla naznačena existence jádra gravitačním měřením,[25] které naznačilo jeho hmotnost mezi 12 až 45 hmotnostmi Země, což odpovídá přibližně 3 až 15 % celkové hmotnosti Jupiteru.[24][27]

Přítomnost jádra byla ale předpokládána i před tímto měřením aspoň po určitý čas historie planety, jelikož modely naznačovaly, že pro vznik planety musela na počátku vzniknout kamenoledová protoplaneta, která by byla schopna svojí hmotností přitáhnout vodík a helium z protosluneční mlhoviny. Za předpokladu, že tedy jádro na začátku historie planety existovalo, dá se spekulovat, že bylo obklopeno teplým kovovým vodíkem smíchaným s nataveným či tavícím se jádrem, čímž by se dostaly jeho stavební prvky do vyšších vrstev planety. Mohlo by se tak i stát, že jádro u dnešního Jupiteru neexistuje a že gravitační měření jsou chybná vlivem nekvalitních měření současnou technikou.[25][28]

Nepřesnost modelů je spojena s chybou rozpětí u dosud měřených parametrů: jednoho z rotačních koeficientů (J6), použitého k popisu gravitačního momentu planety, Jupiterova rovníkového poloměru a jeho teploty při tlaku 1 baru. Sonda Juno, která odstartovala v roce 2011, by měla přinést zpřesnění těchto údajů, a tak učinit pokrok v pochopení problematiky Jupiterova jádra.[29]

Oblast hypotetického jádra je pravděpodobně obklopena hustým kovovým vodíkem, který by se měl rozkládat až do vzdálenosti 78 % poloměru planety.[24] Procesem podobným dešti by hélium a neon měly prostupovat touto vrstvou sníženého zastoupení těchto prvků ve svrchní atmosféře.[10][30]

Nad vrstvou kovového vodíku se nachází vrstva tekutého vodíku a dále pak vrstva plynného vodíku, která se rozšiřuje směrem dolů z vrstvy mračen do hloubky asi 1000 km.[24] Namísto ostrého přechodu mezi těmito vrstvami vodíku bude nejspíše přechod pozvolný, kdy jedno skupenství vodíku bude volně přecházet do druhého bez jasně definované hranice.[31][32] Tento hladký přechod se odehrává pokaždé, když je teplota nad kritickou teplotou, která je pro vodík pouhých 33 K.[33] Teplota a tlak uvnitř Jupiteru postupně narůstají směrem k hypotetickému jádru. V oblasti fázového přechodu, kde se tekutý vodík zahřívá natolik, že se stává kovovým, dosahuje teplota nejspíše kolem 10 000 K a tlak dosahuje přibližně 200 GPa. Teplota na hranici jádra je odhadována na 36 000 K a tlak mezi 3000 až 4500 GPa.[24]

Atmosféra[editovat | editovat zdroj]

Atmosféra Jupiteru se skládá z přibližně 89,8 hmotnostních % vodíku a 10,2 % hélia.[16] Atmosféra obsahuje stopové množství methanu, vodních par, amoniaku a „kamení“. Nalézají se zde také nepatrná množství uhlíku, ethanu, sulfanu, neonu, kyslíku, fosfinusíry.[15] Složení atmosféry se velmi podobá složení sluneční mlhoviny. Saturn má podobné složení, ale UranNeptun mají mnohem méně vodíku a hélia.

Jednotlivé pásy Jupiterovy atmosféry rotují různou rychlostí; tento efekt byl poprvé pozorován Cassinim (1690). Rotace Jupiterovy polární atmosféry je o 5 minut delší než rotace jeho rovníkové atmosféry. Navíc se pásy mraků různé šíře pohybují proti sobě ve směru stálých větrů. Na hranicích těchto konfliktních proudů vznikají bouře a turbulence. Rychlost větru dosahuje 600 km/h v nejhlubších místech měření za podmínek 20 atm přibližně 150 km pod vrcholkem oblaků.[34]

Vrstva mračen[editovat | editovat zdroj]

Tato animace ukazuje pohyb pásů oblačnosti v atmosféře Jupiteru. Obrázek je zobrazen v kuželové projekci.

Jupiter je permanentně zakryt mračny tvořenými krystalky čpavku a pravděpodobně i hydrosulfidem amonným ((NH4)SH). Mračna se nacházejí v tropopauze, kde jsou roztroušena v různých výškách známých jako tropické oblasti. Ty se rozdělují mezi světlejší barevné zóny a tmavší pásy. Vzájemná interakce mezi těmito cirkulujícími skupinami se projevuje bouřemi a turbulencemi. Rychlost větru dosahuje až 100 m/s v oblasti barevných zón,[35] které mohou být každým rokem rozdílné, co se šířky, barvy a intenzity týče, ale na druhou stranu jsou dostatečně stabilní, aby je mohli astronomové pozorovat po delší dobu a identifikovat je.[19]

Vrstva mraků je mocná pouze 50 km a je tvořená dvěma vrstvami mračen: tenčí nižší vrstvou a silnější čiřejší vrstvou. Je možné, že se pod vrstvou čpavkových mračen nachází vrstva, kde jsou přítomné mraky tvořené vodním ledem, jak naznačují odrazy blesků zaznamenaných v atmosféře Jupiteru. (Voda je polární molekula, která může nést elektrický náboj, takže je schopná separovat kladné a záporné náboje, a tak vytvořit blesk.)[24] Takto vzniklé elektrické napětí může být tisíckrát silnější než blesky na Zemi.[36] Bouře ve vodní vrstvě mračen by mohly vznikat vlivem tepla uvolňovaného ve spodních vrstvách planety.[37]

Typické oranžové a hnědé zbarvení mračen Jupiteru je způsobeno výstupem sloučenin ze spodnějších oblastí, které jsou následně vystaveny ultrafialovému záření ze Slunce. Složení těchto sloučenin je v současnosti stále neznámé, ale předpokládá se, že budou složeny z fosforu, síry a pravděpodobně i uhlovodíků.[24][38] Tyto barevné sloučeniny, známé jako chromofory, jsou částí teplejších spodních mračen. Zóny jsou tvořeny tehdy, když konvekční buňky tvořené krystalky amoniaku zakryjí nižší mračna.[39]

Sklon rotační osy Jupiteru má za následek, že oblasti pólů dostávají méně sluneční radiace než oblasti v okolí rovníku. Proudění tepla probíhající uvnitř planety transportuje více energie do oblasti pólů, nicméně vyrovnává teploty ve vrstvách mračen.[19]

Velká rudá skvrna a další bouře[editovat | editovat zdroj]

Tento dramatický pohled na Velkou rudou skvrnu a její okolí pořídila americká sonda Voyager 1 během průletu 25. února 1979 ze vzdálenosti 9,2 miliónu km. Na obrázku je možné pozorovat menší mračna o velikosti 160 km. Barvitý a vlnitý tvar nalevo od červené skvrny představuje oblast s proměnlivým vlnícím se pohybem v atmosféře. Pro lepší představivost rozměrů Jupiteru, malá oválná bílá bouře v atmosféře přesně pod Velkou rudou skvrnou má přibližně velikosti Země.
Podrobnější informace naleznete v článku Velká rudá skvrna.

Nejvíce známý útvar v atmosféře Jupiteru je Velká rudá skvrna, která je dlouhodobě stabilní anticyklinální bouře větší než Země v oblasti 22° jižní šířky. Existují důkazy, že skvrna byla jistě pozorována minimálně od roku 1831,[40] a pravděpodobně dokonce již od roku 1665.[41] Matematické modely naznačují, že skvrna je stálá a mohla by být dlouhodobě stabilní až permanentní útvar v atmosféře planety.[42] Je dokonce i natolik velká, že je možné jí pozorovat pozemskými teleskopy, které mají clonu větší než 12 cm.[43]

Skvrna obíhá v protisměru hodinových ručiček s rotační periodou okolo šesti dní.[44] Velká rudá skvrna je velká v rozmezí 24–40 000 km × 12–14 000 km a je tedy tak velká, že by se do ní vešly dvě až tři Země v průměru.[45] Skvrna vystupuje maximálně okolo 8 km nad okolní vrcholky mračen.[46]

Bouře jako tato jsou typickým projevem v atmosférách plynných obrů. V atmosféře Jupiteru se současně vyskytují i bílé a hnědé skvrny, které jsou většinou bezejmenné. Bílé skvrny jsou pravděpodobně tvořeny relativně studenými mračny uvnitř svrchní atmosféry. Hnědé skvrny jsou naproti tomu nejspíše teplejší a nacházejí se v oblasti, kde se zdržují mračna. Tyto bouře mohou trvat od několika hodin až po stovky let.

Animace pořízená sondou Voyager 1 ukazuje její přibližování k planetě, pohyb atmosférických pásů a cirkulaci Velké rudé skvrny.

Již před přílety sond Voyager (prolétly v roce 1979) bylo patrné, že tyto skvrny nejsou spojeny s žádnými procesy vycházejícími z nitra planety, jelikož se skvrny chovají samostatně bez očividného vztahu k okolní atmosféře. Někdy se pohybují rychleji než okolní vrstvy, jindy pomaleji a mohou současně rotovat i na obě strany vůči okolí. V průběhu existujících záznamů je doloženo, že některé skvrny oběhly planety několikrát bez žádného náznaku spojení s atmosférou či se spodními oblastmi.

V roce 2000 vznikla v oblasti jižní polokoule bouře v atmosféře, která je velice podobná Velké rudé skvrně, ale která je menší. Vznikla jako výsledek sloučení několika menších bouří v jednu. Tři menší bílé bouře pozorované již od roku 1938 se spojily v listopadu 2005 a vytvořily tuto novou bouři, která byla pojmenována Ovál BA a pokřtěna přezdívkou Velká rudá skvrna junior. Od doby vzniku narostla její intenzita a došlo ke změně její barvy z bílé na červenou během prosince 2005.[46][47][48]

Magnetosféra[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Magnetické pole Jupiteru.

Jupiter má velmi rozsáhlou a silnou magnetosféru. Jeho magnetické pole lze vidět i ze Země, může se jevit až 5× větší než Měsíc v úplňku, přestože je mnohem vzdálenější. Je přibližně 14krát silnější než zemské, jeho intenzita se pohybuje v rozsahu 4,2 gausse (odpovídá 0,42 mT) v oblasti rovníku a 10 až 14 gaussů (1 až 1,4 mT) v oblastech pólů.[39] Toto magnetické pole vytváří mohutné výrony urychlených částic v Jupiterových radiačních pásech, interaguje s měsícem Io a vytváří vodivou trubici a plazmový prstenec okolo něj. Jupiterova magnetosféra je největší strukturou sluneční soustavy (je větší než magnetosféra Slunce). Věří se, že pole vzniká vířivými proudy uvnitř jádra tvořeného kovovým vodíkem. Pole zachytává ionizované částice ze slunečního větru, čímž dochází ke vzniku vysoceenergetického pole mimo planetu, v tzv. magnetosféře.

Elektrony z tohoto plazmatického povlaku ionizují mračna oxidu siřičitého ve tvaru torusu vzniklá vulkanickou aktivitou na měsíci Io. Vodíkové částice, uniklé z Jupiterovy atmosféry, jsou taktéž zachyceny v magnetosféře planety. Elektrony v magnetosféře generují silné rádiové signály v rozmezí 0,6–30 MHz.[49]

Polární záře na Jupiteru. Tři světlejší skvrny jsou tvořeny trubicemi magnetického toku, které spojují Joviánské měsíce Io (vlevo), Ganymed (uprostřed) a Europa (taktéž uprostřed). Navíc lze vidět velmi jasnou, téměř kruhovou oblast zvanou hlavní ovál a slabší polární záři.

Sonda Pioneer 10 v roce 1973 potvrdila existenci Jupiterova mohutného magnetického pole. Citlivé přístroje na palubě odhalily, že Jupiterův „severní“ magnetický pól je na jižním geografickém pólu planety s odchylkou 11 stupňů od jupiterské osy rotace a se středem pole posunutým mimo střed Jupitera, podobně jako je tomu u magnetického pole Země. Pioneer zaznamenal rázovou vlnu jupiterské magnetosféry ještě ve vzdálenosti 26 miliónů kilometrů a magnetický ohon dosahující až za Saturnovu oběžnou dráhu. Údaje ukazují, že velikost tohoto magnetické pole na straně obrácené ke Slunci rychle kolísá v důsledku změn tlaku slunečního větru (tento jev byl blíže zkoumán při dvou misích Voyager). Šoková vlna se nachází přibližně 75 poloměrů od Jupiteru. Bylo objeveno, že proudy vysokoenergetických částic jsou vyvrhovány až k oběžné dráze Země. V jupiterovských radiačních pásech byly nalezeny a naměřeny vysokoenergetické protony, ukázalo se, že mezi Jupiterem a některými jeho měsíci (zvláště Io) protékají elektrické proudy. Všechny čtyři velké měsíce ale leží uvnitř tohoto pole, takže jsou chráněny před slunečním větrem.[24] Magnetosféru obklopuje magnetopauza, která je umístěna na vnitřním okraji přechodové vrstvy magnetosféry, kde se magnetické pole planety stává slabým a neuspořádaným.

Rádiové vlny Jupitera[editovat | editovat zdroj]

Magnetosféra Jupiteru způsobuje intenzivní krátké rádiové záblesky z polárních oblastí. Vulkanická aktivita měsíce Io dodává do magnetosféry Jupiteru plyny, které vytvářejí torus částic kolem planety. Jak se Io pohybuje skrze tento torus, dochází vzájemnou interakcí ke vzniku Alfvénových vln, které přenášejí ionizované částice do polárních oblastí, což umožňuje vznik radiových vln vlivem mechanismu cyklotronového astrofyzikálního maseru. Energie je šířena do okolí podél povrchu kuželu. Když Země prochází tímto kuželem, můžou radiové signály přehlušit šum způsobovaný Sluncem. Rádiové vlny Jupitera se šíří vesmírem na frekvencích od 15 do 38 MHz. Pod mez jsou vlny odráženy ionosférou Země a nad mez je intenzita vln příliš malá. Rádiové vlny se dělí na 7 kanálů, tzv. módů, což jsou frekvenční kanály pro vysílání Jupitera a měsíce Io z různých míst a na různých frekvencích.[50] V tabulce jsou tyto módy uvedeny:

Označení kanálu Maximální
frekvence (MHz)
Io-D 18
Io-B 39,5
non Io-B 38
Io-A 38
non Io-A 38
Io-C 36
non Io-C 32

Planetární prstence[editovat | editovat zdroj]

Prstence Jupiteru
Podrobnější informace naleznete v článku Prstence Jupiteru.

Jupiter má nezřetelný systém planetárních prstenců skládajících se ze tří částí: vnitřního torusu, relativně jasného hlavního prstence a vnějšího slabšího prstence.[51] Oproti prstencům Saturnu nejsou tvořeny ledem, ale spíše prachem.[24] Vnější prstenec je složený z částic podobných kouři, jež byly po dopadech meteoritů vymrštěny z jeho měsíců. Hlavní prstenec je tvořen prachem ze satelitů AdrasteaMetis, který, místo aby spadl zpět na měsíce, je gravitačním působením Jupiteru zachycen a přitahován směrem k planetě.[52] Další impakty pak doplňují nový materiál. Dva široké jemné prstence, které obklopují hlavní, pocházejí z měsíců ThebeAmalthea. Existuje také velmi řídký a vzdálený vnější prstenec, který krouží kolem Jupiteru opačným směrem.[52] Jeho původ je nejistý, snad je tvořen zachyceným meziplanetárním prachem.[zdroj?]

Dráha a rotace[editovat | editovat zdroj]

Jupiter je jediná planeta, jejíž těžiště se Sluncem leží mimo objem Slunce, i když jen o 7 % jeho poloměru.[53] Průměrná vzdálenost mezi Jupiterem a Sluncem je 778 miliónů km (přibližně 5,2 AU) a kolem Slunce oběhne jednou za 11,86 let, což odpovídá 2/5 oběžné doby Saturnu, se kterým má dráhovou rezonanci v poměru 5:2.[54] Sklon osy Jupiteru je ukloněn o 1,31° vzhledem k Zemi. Jelikož Jupiter má oběžnou excentricitu rovnou 0,048, jeho vzdálenost mezi perihéliem a aféliem se mění o 75 miliónů km.

Sklon rotační osy Jupiteru je nízký, dosahuje pouze 3,13°. Výsledkem malého sklonu osy se na Jupiteru neprojevují sezónní variace počasí jako v případě Země či Marsu.[55]

Jupiter má nejrychlejší rotaci ze všech planet v celé sluneční soustavě, jednu otočku kolem své rotační osy uskuteční za méně než 10 hodin, což vytváří vyklenutí v oblasti rovníku, která je snadno viditelná ze Země i amatérskými dalekohledy. Tato rotace vyžaduje dostředivé zrychlení na rovníku okolo 1,67 m/s², ve srovnání s povrchovou gravitací na rovníku 24,79 m/s²; takže čisté zrychlení v oblasti rovníku je pouze 23,12 m/s². Planeta má tvar rotačního sferoidu, je tedy větší v rovníkovém průměru než při měření průměru přes geografické póly. Rovníkový průměr je o 9275 km delší než polární.[32]

Jelikož Jupiter není těleso s pevným povrchem, jeho svrchní atmosféra má rozdílnou rotaci. Rotační doba polárních oblastí je přibližně o 5 minut delší než je rotační doba atmosféry v oblasti rovníku. Pro popis těchto vrstev se používají tři referenční oblasti, když se chce popsat pohyb částic jednotlivými oblastmi. Systém I se používá pro oblasti mezi 10° severní až 10° jižní šířky, jedná se o oblast s nejkratší dobou rotace, která odpovídá 9 hod 50 min a 30 s. Systém II se využívá ve všech dalších oblastech na sever a na jih od 10°, jeho oběžná doba je 9 hod 55 min a 40,6 s. Systém III byl navržen kvůli radioastronomii a odpovídá rotaci planetární magnetosféry, která se uvádí jako oficiální doba rotace Jupiteru.[56]

Pozorování[editovat | editovat zdroj]

Jupiter je obvykle čtvrtým nejjasnějším objektem na obloze po Slunci, Měsíci a Venuši,[39] nicméně někdy se jasnějším než on stane planeta Mars, když se přiblíží více k Zemi. V závislosti na pozici vzhledem k Zemi se mění Jupiterova magnituda od –2,9 v době opozice až na –1,6 v době konjunkce. Úhlová velikost Jupiteru se mění mezi 50,1 a 29,8 úhlové vteřiny.[16]

Příznivé opozice nastávají, když Jupiter prochází perihéliem – tato událost nastává jednou během oběhu. Jupiter byl v perihéliu v březnu roku 2011 a příznivá opozice nastala v srpnu roku 2010.[57]

Retrográdní pohyb vnějších planet je způsoben relativní pozicí vůči Zemi

Každých 398,9 dnů obíhání kolem Slunce Země předstihne Jupiter (doba nazývaná synodická perioda). Zdá se, že při tom Jupiter podejde retrográdní dráhu s ohledem na hvězdy v pozadí. Díky tomu to vypadá, že se Jupiter po nějakou dobu pohybuje zpět po noční obloze a utváří tak smyčku.

Doba oběhu Jupiteru je 12 let, což je stejně jako počet znamení zvěrokruhu a může to být historický původ těchto znamení.[19] (Vždy, když Jupiter dosáhne opozice, je posunutý na východ o zhruba 30°, což je šířka znamení zvěrokruhu.)

Protože oběžná dráha Jupiteru je mimo oběžnou dráhu Země, fázový úhel Jupiteru sledovaného ze Země nikdy nepřekročí 11,5° a většinou je blízko nule. Proto je planeta při pozorování skrze zemské dalekohledy vždy téměř celá osvětlená. Fotografie zčásti zatemněného Jupiteru byly pořízeny pouze při vesmírných misích na tuto planetu.[58]

Historie pozorování[editovat | editovat zdroj]

V roce 1610 Galileo Galilei za pomoci malého dalekohledu objevil čtyři největší měsíce Jupiteru – Io, Europu, Ganymed a Callisto (pro které se později vžil název Galileovy měsíce). Toto pozorování bylo pravděpodobně první pozorování měsíce jiné planety než Země. (Nutno ale poznamenat, že čínský historik astronomie Xi Zezong zaznamenal, že čínský astronom Gan De objevil jeden z měsíců Jupiteru již v roce 362 př. n. l. pouhým okem. Kdyby bylo toto pozorování doložitelné a přesné, předběhlo by Galilea o téměř dvě tisíciletí.)[59][60] Galileo současně tímto jako první objevil, že v nebeské mechanice neobíhají všechna tělesa kolem Země, což později využil ve své práci Mikuláš Koperník pro svůj heliocentrický model. Galileova podpora nového pojetí chápaní vesmíru zapříčinila, že se ocitl ve sporu s inkvizicí.[61]

V průběhu 60. let 17. století Giovanni Domenico Cassini použil nový dalekohled, za jehož pomoci objevil skvrny a barevné pásy v atmosféře a to, že planeta má nepravidelný tvar, jelikož je zploštělá na pólech. Současně se mu povedlo určit oběžnou dobu planety.[7] V roce 1690 si Cassini všiml, že atmosféra rotuje různými rychlostmi.[24]

Detailní snímek atmosféry v nepravých barvách pořízený sondou Voyager 1 ukazuje Velkou rudou skvrnu a okolní bílé bouře

Velká rudá skvrna je prominentní oválný útvar na jižní polokouli planety, která byla pravděpodobně pozorována již v roce 1664 Robertem Hookem a v roce 1665 Giovannim Cassinim, ale pozorování nejsou zcela průkazná. Nejstarší známý nákres skvrny pochází z roku 1831 od Heinricha Schwabeho.[62]

Velká rudá skvrna se měla několikrát mezi lety 16651708 ztratit z pozorování, než se stala opět jasně viditelnou v roce 1878. K poklesu její viditelnosti mělo taktéž dojít v roce 1883 a na začátku 20. století.[63]

Giovanni Alfonso Borelli i Cassini pečlivě zaznamenávali pohyby měsíců do tabulek, což umožnilo předpovídat přesné časy, kdy měsíce přejdou přes Jupiterem a jestli přejdou před planetou či za planetou vzhledem k pozorovateli. V 70. letech 17. století ale bylo pozorováno, že když je Jupiter na druhé straně od Slunce než je Země, předpokládané časy pozorování se zpožďovaly o 17 minut. Ole Rømer odvodil, že pozorování tak není okamžité, čehož bylo později využito pro určení rychlosti světla.[64]

V roce 1892 pozoroval Edward Emerson Barnard pátý měsíc Jupiteru za pomoci dalekohledu se zrcadlem 910 mm na Lickově observatořiKalifornii. Objev tohoto relativně malého objektu, svědčící o jeho bystrému zraku, ho rychle proslavil. Měsíc byl později pojmenován Amalthea.[65] Objevení tohoto měsíce se stalo současně i posledním objevem měsíce za pomoci přímého pozorování.[66] Dalších osm měsíců objevila až sonda Voyager 1 během průletu v roce 1979.

Infračervený snímek Jupiteru pořízený Very Large Telescopem Evropské jižní observatoře

V roce 1932 Rupert Wildt identifikoval ve spektrálních čarách Jupiteru čpavek a methan.[67]

Tři dlouhotrvající anticyklóny vyskytující se poblíž sebe v podobě bílých oválů byly pozorovány v roce 1938, ale i po několika desetiletích pozorování se stále nacházejí individuálně v atmosféře Jupiteru a to i přes to, že se občas k sobě přibližují. Nespojily se až do roku 1998, kdy se spojily první dvě, a třetí pohltily v roce 2000, čímž vznikla struktura zvaná Oval BA.[68]

V roce 1955 Bernard Burke a Keneth Franklin objevili záblesky radiového signálu přicházejícího z Jupiteru na frekvenci 22,2 MHz.[24] Tyto záblesky se shodují s dobou rotace planety, čehož taktéž vědci využili pro zpřesnění doby rotace planety. Signály z Jupiteru přicházejí na Zemi ve dvou formách: dlouhé záblesky (L-záblesky) trvající několik sekund a krátké záblesky (či S-záblesky), které trvají jen setiny vteřiny.[69]

Z Jupiteru vycházejí tři druhy radiového signálu:

  • dekametrické radiové záblesky (o vlnové délce v řádech desítek metrů) se mění s rotací Jupiteru a jsou ovlivněny interakcemi měsíce Iomagnetickým polem Jupiteru[70]
  • decimetrická rádiová emise (o vlnové délce v řádech centimetrů) byla prvně pozorována Frankem Drakem a Heinem Hvatumem v roce 1959.[24] Zdrojem tohoto signálu byla oblast pásu okolo rovníku Jupiteru, který má tvar protáhlého ohonu. Signál způsobuje cyklotronové záření vznikající elektrony urychlujícími se v magnetickém poli planety[71]
  • tepelné záření vzniká působením tepla v atmosféře Jupiteru[24]

Průzkum kosmickými sondami[editovat | editovat zdroj]

Od roku 1973 navštívilo Jupiter několik automatických sond. Lety k jiným planetám vyžadují velké množství energie pro dosažení potřebné rychlosti, která umožní uniknout tělesu z gravitačního vlivu Země a dosažení cílové planety. Pro dosažení Jupiteru musí tělesa ze Země dosáhnout rychlosti delta-v 9,2 km/s,[72] která je srovnatelná s rychlostí 9,7 km/s potřebnou pro dosažení pozemské nízké oběžné dráhy.[73] Naštěstí je pro dosažení Jupiteru možné použít gravitačního praku jiných planet, což výrazně snižuje energetické nároky na sondy, které k Jupiteru směřují. Metoda gravitačního praku tak přispívá ke značnému snížení nákladů sond na cestu, ale na druhou stranu prodlužuje násobně dobu jejich letu a dosažení cílové planety.[72]

Průlety[editovat | editovat zdroj]

Průlety
Sonda Nejbližší
přiblížení
Vzdálenost
Pioneer 10 3. prosince 1973 130 000 km
Pioneer 11 4. prosince 1974 34 000 km
Voyager 1 5. března 1979 349 000 km
Voyager 2 9. července 1979 570 000 km
Ulysses 8. únor 1992 409 000 km
4. únor 2004 120 000 000 km
Cassini 30. prosince 2000 10 000 000 km
New Horizons 28. února 2007 2 304 535 km
Fotografie, kterou pořídil Voyager 1 24. ledna 1979, kdy byl stále vzdálen od planety přes 40 miliónů kilometrů.

Na začátku roku 1973 provedlo několik sond gravitační manévr v okolí planety, což přineslo množství příležitostí ke studiu planety. Sonda Pioneer 10 byla první pozemskou sondou u Jupiteru.[74] Mise Pioneer 10 a 11 pořídily první barevné snímky Jupiterovy atmosféry a několika jeho měsíců z blízka. Objevily, že se kolem planety nacházejí značně silnější radiační pásy, než se očekávalo, ale i přes to obě sondy přežily průlet radiační oblastí. Pro zlepšení odhadu hmotnosti Joviánského systému byly následně využity změny trajektorie jejich letu. Průlet také pomohl zpřesnit velikost planety a velikost polárního zploštění.[19][75]

O šest let později k dalšímu porozumění Jupiteru a Galileovo měsícům přispěly sondy Voyager, které objevily i prstence Jupiteru. Současně potvrdily, že Velká rudá skvrna je anticyklóna. Porovnání snímků ukázalo, že se skvrna od doby průletu sond Pioneer změnila z oranžové barvy na tmavě hnědou. Okolo oběžné dráhy měsíce Io byl objeven ionizovaný ohon a došlo k pozorování i sopek na povrchu tohoto měsíce, některé zrovna během erupcí. Když sondy přeletěly planetu a ocitly se za ní, pozorovaly blesky na noční straně planety v její atmosféře.[6][19]

Další mise, která navštívila Jupiter, byla sluneční sonda Ulysses, která provedla průlet kolem Jupiteru, aby se dostala na polární orbitu kolem Slunce. Během průletu sonda zkoumala magnetosféru planety, jelikož ale sonda nebyla vybavena žádnými kamerami, z mise nejsou dostupné snímky. Druhý průlet kolem Jupiteru proběhl o šest let později ve značně větší vzdálenosti.[76]

V roce 2000 sonda Cassini na své cestě k Saturnu prolétla kolem Jupiteru, během čehož pořídila několik snímků ve vysokém rozlišení. 19. prosince 2000 pořídila sonda snímek měsíce Himalia, ale rozlišení snímku bylo příliš nízké, než aby bylo možné vidět nějaké detaily povrchu.[77]

Sonda New Horizons na své cestě k Plutu proletěla okolo Jupiteru, když využila jeho gravitaci pro získání rychlosti. Nejblíže se přiblížila k planetě 28. února 2007.[78] Kamera na palubě sondy se zaměřila na pozorování a měření výtrysků plazmy ze sopek na Io a současně studovala i další velké Galileovy měsíce a vnější měsíce Himalia a Elara.[79] Snímkování Jupiterovo systému začalo 4. září 2006.[80][81]

Mise Galileo[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Sonda Galileo.
Jupiter pozorovaný během průletu sondy Cassini

Zatím jediná sonda, která obíhala kolem Jupiteru, je sonda Galileo, která tak činila od 7. prosince 1995, kdy byla navedena na oběžnou dráhu kolem planety. Kolem planety následně obíhala po dobu delší než 7 let, během kterých uskutečnila mnoho obletů kolem Galileových měsíců a měsíce Amalthea. Sonda byla současně svědkem dopadu komety Shoemaker-Levy 9 do atmosféry Jupiteru v roce 1994, i když tehdy ještě nebyla navedena na oběžnou dráhu planety. I když získané množství dat bylo obrovské, misi poznamenala špatně rozvinutá parabolická anténa pro přenos dat, což zmenšilo množství přenesených informací převážně v podobě obrázků.[82]

V červenci 1995 byla ze sondy uvolněna atmosférická sonda, která vstoupila do atmosféry planety 7. prosince. Sonda následně na padáku padala 150 km po dobu 57,6 minuty, během kterých získávala data. Po této době byla sonda rozdrcena tlakem, který v atmosféře panuje.[83] Nefunkční sonda se následně, jak padala níže, nejspíše celá roztavila a pak se vypařila. Podobný osud postihl i sondu Galileo na konci svého funkčního období, když byla 21. září 2003 uměle navedena do atmosféry rychlosti 50 km/s. Takto řízené zničení sondy mělo zabránit potenciální kontaminaci Europy pozemským životem, který mohl přežít sterilizaci sondy.[82]

Mise Juno[editovat | editovat zdroj]

V roce 2011 byla k Jupiteru vypuštěna sonda Juno,[84] která bude po svém příletu k planetě v roce 2016 navedena na polární oběžnou dráhu. Odtud bude studovat gravitační a magnetické pole planety a složení její atmosféry. Měření budou probíhat po dobu jednoho roku, během kterého sonda vykoná 33 oběhů. Mise bude ukončena v roce 2017 řízeným zánikem sondy v atmosféře obří planety.[85]

Budoucí a zrušené mise[editovat | editovat zdroj]

ESA společně s NASA plánuje misi Europa Jupiter System Mission (EJSM) pro průzkum Jupiteru a jeho měsíců, v únoru 2009 došlo k dohodě mezi agenturami, že tato mise dostane přednost před misí Titan Saturn System Mission.[86][87] Příspěvek ESA bude i tak nadále čelit konkurenci ze strany ostatních financovaných projektů ESA.[88] Předpokládá se, že by případný start měl proběhnout okolo roku 2020. Sonda by se měla skládat z části pod patronací NASA zvané Jupiter Europa Orbiter a částí pod správou ESA v podobě modulu Jupiter Ganymede Orbiter.[89] Americká i evropská sonda budou zcela oddělené, samostatně odstartují do vesmíru a samostatně k Jupiteru doletí. Každá ze sond JGO a JEO bude primárně zaměřena na jeden měsíc a sekundárně na další, každá tedy bude zkoumat dva ze čtyř velkých měsíců největší planety.[90]

Jelikož existuje možnost, že se pod povrchem Jupiterových měsíců Europy, Ganymedu a Callista nacházejí oceány tvořené tekutinou, jsou tyto ledové měsíce předmětem zájmu vědců. Problémy s rozpočtem způsobilo zpoždění sond, které měly některý z těchto světů prozkoumat. V roce 2005 došlo ke zrušení mise Jupiter Icy Moons Orbiter v rámci programu NASA.[91] Obdobně ESA zvažovala misi Jovian Europa Orbiter,[92] ale byla později nahrazena misí Europa Jupiter System Mission (EJSM).

Jupiterovy měsíce[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Měsíce Jupiteru.
4 galileovské měsíce ve srovnání s Jupiterem a jeho Velkou rudou skvrnou. Odshora vidíme: Io, Europu, Ganymeda a Callisto.

Jupiter má 63 pojmenovaných měsíců. Z toho 47 jich je menších než 10 kilometrů v průměru a všechny tyto měsíce byly objeveny až po roce 1975. Čtyři největší měsíce, známé jako „galileovské měsíce“, jsou Io, Europa, Ganymed a Callisto.

Galileovské měsíce[editovat | editovat zdroj]

Oběžné dráhy Io, Europy a Ganymeda vykazují dráhovou rezonanci (tzv. Laplaceova rezonance); na každé čtyři oběhy Io kolem Jupiteru uskuteční Europa přesně dva oběhy a Ganymed přesně jeden. Tato rezonance způsobuje gravitační efekt deformující dráhy těchto tří měsíců do eliptických křivek, poněvadž každý z těchto měsíců obdrží vždy na stejném místě oběžné dráhy od svých sousedů tah navíc.[93]

Na druhou stranu slapové síly Jupiteru mají tendenci držet měsíce v kruhových drahách. Tato přetahovaná způsobuje pravidelné změny tvarů těchto tří měsíců, Jupiterova gravitace napíná měsíce mnohem silněji v jemu bližší části oběžné dráhy a dovoluje opětovné smrštění do kulovitějšího tvaru ve vzdálenější části dráhy. Tyto změny tvaru způsobují slapové ohřívání jader měsíců. Nejdramatičtěji se to projevuje neobyčejnou vulkanickou aktivitou Io a o něco méně dramaticky geologicky mladým povrchem Europy značícím nedávné zalití povrchu tekutou hmotou z nitra. Odhaduje se, že věk povrchu Europy je pouze 20 až 180 miliónů let.[94]

Galileovské měsíce při srovnání s pozemským Měsícem
Jméno IPA Průměr Hmotnost Poloměr dráhy Doba oběhu
km  % kg  % km  % dny  %
Io ˈaɪ.oʊ 3643 105 8,9×1022 120 421 700 110 1,77 7
Europa jʊˈroʊpə 3122 90 4,8×1022 65 671 034 175 3,55 13
Ganymed ˈɡænimiːd 5262 150 14,8×1022 200 1 070 412 280 7,15 26
Callisto kəˈlɪstoʊ 4821 140 10,8×1022 150 1 882 709 490 16,69 61
Jupiterův měsíc Europa

Rozdělení měsíců Jupiteru[editovat | editovat zdroj]

Dříve se mělo za to, že Jupiterovy měsíce lze rozdělit do čtyř skupin po čtyřech, ale protože poslední objevy mnoha nových malých vzdálených měsíců toto rozdělení zkomplikovaly, převládá nyní členění na šest hlavních skupin, i když některé jsou různorodější než jiné. Rozdělení do skupin může mít hlubší význam, protože některé skupiny mohly vzniknout ze společného základu – většího měsíce nebo zachyceného tělesa, které se rozpadlo na více kusů.

Základní rozdělení je na nepravidelné a pravidelné měsíce. Pravidelné je skupina osmi vnitřních měsíců, které mají téměř kruhovou dráhu poblíž roviny Jupiterovo rovníku a u nichž se věří, že vznikly společně s Jupiterem. Zbývající nepravidelné měsíce neznámého počtu o různých drahách jsou pravděpodobně tělesa, která byla později zachycena a která vznikla v jiných částech soustavy. Skupiny měsíců, které mají podobné parametry oběžné dráhy mohou být fragmenty většího měsíce, který byl silou Jupiteru rozdrcen na menší části.[95][96]

Pravidelné měsíce
Vnitřní měsíce Vnitřní skupina čtyř malých měsíců o průměrech menších než 200 km s oběžnými drahami o poloměru menším než 200 000 km a se sklonem dráhy menším než půl stupně.
Galileovy měsíce[97] Skupina čtyř galileovských měsíců objevených Galileo Galileim s oběžnými drahami 400 000–2 000 000 km od Jupiteru, která obsahuje největší měsíce ve sluneční soustavě.
Nepravidelné měsíce
Themisto Themisto je skupinou sám o sobě, obíhá na půl cesty mezi galileovskými měsíci a další skupinou.
Rodina Himalia Těsně svázaná skupina měsíců s oběžnými drahami o poloměrech 11-12 miliónů kilometrů.
Carpo Další osamocený měsíc poblíž skupiny Ananke
Rodina Ananke Skupina Ananke má dost nejasné hranice s průměrnými poloměry oběžných drah 21 276 000 km a průměrným sklonem dráhy 149 stupňů.
Rodina Carme Výrazná skupina průměrně 23 404 000 km od Jupiteru s průměrným sklonem dráhy 165 stupňů.
Rodina Pasiphae Pesiphae je rozptýlená a neurčitá skupina obsahující všechny nejvzdálenější měsíce.

Vliv na sluneční soustavu[editovat | editovat zdroj]

Společně se Sluncem přispěl Jupiter gravitačním působením k zformování sluneční soustavy. Oběžné dráhy většiny planet leží blíže oběžné rovině Jupiteru než rovníkové rovině Slunce (vyjma Merkuru, který je jediná planeta ležící blíže sluneční rovině rovníku). Kirkwoodova mezerapásu asteroidů je pravděpodobně způsobena Jupiterem, který mohl způsobit i období pozdního těžkého bombardování vnitřních planet sluneční soustavy.[98]

Nákres ukazuje Trojany v oběžné dráze Jupiteru společně s hlavním pásem asteroidů

Gravitační pole ovládá kromě Jupiterových měsíců i množství asteroidů, které se nacházejí v Lagrangeovo bodě před i za Jupiterem a které společně s ním obíhají kolem Slunce. Tyto asteroidy jsou známé jako Trojáni. První asteroid 588 Achilles byl objeven v roce 1906 Maxem Wolfem a od té doby jich bylo objeveno více jak dva tisíce.[99] Největší z nich je 624 Hektor.

Dopady[editovat | editovat zdroj]

Dopad části komety na povrch Jupiteru. Temné mraky povstávající z místa dopadu jsou větší než Země.
Obrázek z Hubbleova vesmírného dalekohledu ukazuje skvrnu asi 8 000 kilometrů dlouhou, která se utvořila po dopadu komety nebo planetky v červenci 2009.[100]

Jupiter se pro jeho obrovské gravitační působení, které vytváří kolem planety značnou gravitační studni, někdy označuje jako vysavač vakua ve sluneční soustavě.[101] Z toho důvodu je nejčastějším cílem dopadů komet ve sluneční soustavě.[102] Dříve se předpokládalo, že planeta funguje jako štít pro vnitřní planety před dopady komet, ale pozdější počítačové modelace naznačují, že pouhá přítomnost Jupiteru nezmenšuje významně množství komet, které do vnitřní části soustavy procházejí, jelikož jeho gravitační působení některé komety přitáhne a stejný počet jen odkloní a opět odhodí do okolního prostoru.[103] Obecně ale nepanuje mezi astronomy shoda, jestli Jupiter chrání Zemi před kometami či ne. Uvažují, že sice může zachycovat nebezpečné komety ze vzdáleného Oortova mračna, ale na druhou stranu může způsobovat změny drah komet v bližším Kuiperově pásu tak, že mohou být nebezpečné pro Zemi.[104]

V roce 1997 průzkum historických kreseb naznačil, že astronom Cassini pravděpodobně pozoroval v roce 1690 jizvu způsobenou dopadem neznámého tělesa na Jupiter. U dalších 8 podobných případů studie tuto možnost vyloučila nebo naznačila jen malou pravděpodobnost, že se jednalo o impakt.[105] V období 16. – 22. července 1994 dopadlo na jižní polokouli Jupiteru více než 20 částí rozpadlého jádra komety Shoemaker-Levy 9, což dalo příležitost k prvnímu přímému pozorování srážky dvou těles ve sluneční soustavě. Kolize komety přinesla důležité poznatky o složení atmosféry Jupiteru.[106][107]

19. července 2009 bylo v atmosféře Jupiteru objeveno místo dopadu dalšího tělesa, které se nacházelo přibližně na 216° zeměpisné délky.[108][109] Impakt za sebou zanechal velkou černou skvrnu, která velikostí odpovídala Oválu BA (útvaru v jupiterově atmosféře podobnému Velké rudé skvrně). Pozorování v infračerveném spektru ukázalo jasnější oblast poblíž jižního pólu planety, vyznačující místo vstupu do atmosféry, zahřáté třením tělesa při jeho sestupu.[110]

Průlety[editovat | editovat zdroj]

Jupiter jako největší planeta sluneční soustavy nezpůsobuje pouze pády těles do své atmosféry, ale mění také dráhy komet a planetek, které proletí v jeho relativně těsné blízkosti. Např. v roce 1935 způsobil změnu dráhy komety Honda-Mrkos-Pajdušáková.[111] Kometa kolem něj prolétla ve vzdálenosti 0,08 AU (asi 12 miliónu km), což změnilo její oběžnou dobu z 5,53 na 5,27 roku. Zároveň se změnily elementy její dráhy tak, že se nyní přibližuje ke Slunci na 0,58 AU (dříve to bylo 0,64 AU).

Jupiter tímto způsobem mění dráhy velkého množství komet a planetek, někdy mnohem výrazněji.[112]

Možnost života[editovat | editovat zdroj]

V roce 1953 Millerův-Ureyův experiment ukázal, že kombinací blesků a chemických sloučenin existujících v atmosféře primitivní Země je možné vytvořit z organických sloučenin obsahujících aminokyseliny složitější organické sloučeniny, které mohou sloužit jako základní stavební kameny života. Simulovaná atmosféra obsahovala vodu, methan, čpavek a molekulární vodík, všechny sloučeniny, které je možné pozorovat v atmosféře Jupiteru. Nicméně atmosféra Jupiteru má silnou vertikální cirkulaci, která by mohla tyto komponenty zanášet do spodních vrstev atmosféry, kde by vysoká teplota způsobila jejich rozpad a tak i bránila vzniku podobného života, jaký existuje na Zemi.[113]

Je vysoce nepravděpodobné, že by se na Jupiteru nacházel život podobný tomu pozemskému, jelikož se zde vyskytuje jen malé množství vody v atmosféře a případný pevný povrch planety by byl vystaven extrémnímu tlaku. Nicméně před průlety sond Voyager v roce 1976 se objevily hypotetické spekulace naznačující možnost existence života založeného na vodě či čpavku, který by se vyvíjel ve svrchních vrstvách atmosféry. Tato hypotéza je založena na životě v pozemských mořích, kde se jednoduché organismy v podobě planktonu vyskytují ve svrchních vrstvách a pod nimi se pak nacházejí ryby konzumující právě plankton a predátoři lovící ryby.[114][115]

Jupiter v kultuře[editovat | editovat zdroj]

Astrologie[editovat | editovat zdroj]

Jupiter je znám již od dávných dob, jelikož je viditelný pouhým okem na noční obloze a příležitostně se dá pozorovat i přes den, když je Slunce nízko nad obzorem.[116] Pro Babyloňany představoval Jupiter boha Marduka, jeho 12letá oběžná doba okolo ekliptiky byla využívána pro určení babylonského zvěrokruhu.[19][117] Číňané, Korejci, Japonci a Vietnamci hovoří o planetě jako o „dřevěné hvězdě, zápis pomocí čínských znaků 木星,[118] spojené s pěti elementy dle čínské filosofie. Řekové Jupiter nazývali Φαέθων, Faethón, „planoucí“. Ve védské astrologii pojmenovali hinduističtí astrologové planetu po bohovi Brhaspati, učiteli všech ostatních bohů, který je často nazýván „Guru“.[119]angličtině je den čtvrtek (ang. Thursday) spojen s bohem Thórem (Thor's day), který je taktéž spojován s Jupiterem v severské mytologii.[120]

Římané pojmenovali planetu po bohu Jupiteru (také zvaný Jova), který byl hlavním bohem římské mytologie. Jeho jméno pochází z protoindoevropského vokativa *dyeu ph2ter, znamenající „Bůh Otec“.[1] Astronomický symbol pro planetu, ♃, je stylistické znázornění božského blesku. Původní řecký bůh, Zeus, přijatý Římany, poskytuje kořen „zeno-“, používaný k vytváření slov spojených s Jupiterem, například zenografický (změřený vzhledem k povrchu Jupiteru).[121]

angličtině se jako přídavné jméno od Jupiteru dnes používá slovo jovian. Dříve – převážně astrology ve středověku – používaná forma jovial (česky žoviální) dnes znamená veselý či šťastný, což odráží astrologickou charakteristiku planety.[122]


Poznámky[editovat | editovat zdroj]

  1. Relativní atomová hmotnost hélia (He) je přibližně 4, u (H) je to 1. Na rozdíl od hélia, které se vyskytuje v atomární formě (He), ale vodík tvoří dvojatomární molekuly (H2), poměr relativních molekulových hmotností je tedy přibližně 4:2 = 2:1.

Odkazy[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

V tomto článku byl použit překlad textu z článku Jupiter na anglické Wikipedii.

  1. a b HARPER, Douglas. Jupiter [online]. Online Etymology Dictionary, 2001-11, [cit. 2007-02-23]. Dostupné online.  
  2. POKORNÝ, Zdeněk. Exoplanety. Praha : Academia, 2007. ISBN 978-80-200-1510-5. S. 62.   [Dále jen Pokorný]
  3. a b Jupiter sa (možno) sformoval za 300 rokov. Kozmos. 2003, roč. XXXIV, čís. 1, s. 2. ISSN 0323-049X. (slovensky) 
  4. Pokorný, str. 75.
  5. KLEZCEK, Josip. Velká encyklopedie vesmíru. Praha : Academia, 2002. ISBN 80-200-0906-X. S. 437.  
  6. a b Gautier, D.; Conrath, B.; Flasar, M.; Hanel, R.; Kunde, V.; Chedin, A.; Scott N.. The helium abundance of Jupiter from Voyager. Journal of Geophysical Research. 09 1981, čís. 86, s. 8713–8720. Dostupné online [cit. 2007-08-28]. DOI:10.1029/JA086iA10p08713.  
  7. a b Kunde, V. G. et al.. Jupiter's Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment. Science [online]. 2004-09-10 [cit. 2007-04-04], s. 1582–86. Dostupné online. ISSN 1095-9203. DOI:10.1126/science.1100240. PMID 15319491.  
  8. Kim, S. J.; Caldwell, J.; Rivolo, A. R.; Wagner, R.. Infrared Polar Brightening on Jupiter III. Spectrometry from the Voyager 1 IRIS Experiment. Icarus. 1985, čís. 64, s. 233–248. Dostupné online [cit. 2007-08-28]. DOI:10.1016/0019-1035(85)90201-5.  
  9. Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; Owen, T. C.; Spencer, N. W.; Way, S. H.. The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere. Science. 1996, čís. 272, s. 846–849. Dostupné online [cit. 2007-02-19]. ISSN 1095-9203. DOI:10.1126/science.272.5263.846. PMID 8629016.  
  10. a b MAHAFFY, Paul. Highlights of the Galileo Probe Mass Spectrometer Investigation [online]. NASA Goddard Space Flight Center, Atmospheric Experiments Laboratory, [cit. 2007-06-06]. Dostupné online.  
  11. Ingersoll, A. P.; Hammel, H. B.; Spilker, T. R.; Young, R. E.. Outer Planets: The Ice Giants [online]. Lunar & Planetary Institute, 2005-06-01, [cit. 2007-02-01]. Dostupné online.  
  12. 5. The Planet Jupiter [online]. Solarviews.com, [cit. 2010-02-09]. Dostupné online. (anglicky) 
  13. a b LADMA, Vladímír. Sluneční aktivita [online]. [cit. 2010-02-09]. Dostupné online.  
  14. KALENDA, P.; MÁLEK, J.. Je sluneční aktivita spojená s variacemi momentu hybnosti Slunce? [online]. [cit. 2010-02-10]. S. 38. Dostupné online.  
  15. a b c KLEZCEK, Josip; strana 203.
  16. a b c d WILLIAMS, Dr. David R.. Jupiter Fact Sheet [online]. NASA, 2004-11-16, [cit. 2007-08-08]. Dostupné online.  
  17. I have heard people call Jupiter a "failed star" that just did not get big enough to shine. Does that make our sun a kind of double star? And why didn't Jupiter become a real star? [online]. Scientificamerican.com, [cit. 2010-02-09]. Dostupné online. (anglicky) 
  18. BOSS, Alan. Are They Planets or What? [online]. Carnegie Institution of Washington, 2001-04-03, [cit. 2006-06-08]. Dostupné online. (anglicky) 
  19. a b c d e f g BURGESS, Eric. By Jupiter: Odysseys to a Giant. New York : [s.n.], 1982. ISBN 0-231-05176-X.  
  20. Jean Schneider. The Extrasolar Planets Encyclopedia: Interactive Catalogue [online]. Paris Observatory, [cit. 2009-10-01].  
  21. GUILLOT, Tristan. Interiors of Giant Planets Inside and Outside the Solar System. Science. 1999, čís. 286, s. 72–77. Dostupné online [cit. 2007-08-28]. ISSN 1095-9203. DOI:10.1126/science.286.5437.72. PMID 10506563.  
  22. Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I.. An expanded set of brown dwarf and very low mass star models. Astrophysical Journal. 03 1993, čís. 406, s. 158–71. Dostupné online [cit. 2007-08-28]. DOI:10.1086/172427.  
  23. QUELOZ, Didier. VLT Interferometer Measures the Size of Proxima Centauri and Other Nearby Stars. Letter to the Editor. European Southern Observatory, 2002-11-02. Dostupné online [cit. 2007-01-12].  
  24. a b c d e f g h i j k l m ELKINS-TANTON, Linda T.. Jupiter and Saturn. New York : Chelsea House, 2006. ISBN 0-8160-5196-8.  
  25. a b c d Guillot, T.; Stevenson, D. J.; Hubbard, W. B.; Saumon, D.. Jupiter: The Planet, Satellites and Magnetosphere. Příprava vydání Bagenal, F.; Dowling, T. E.; McKinnon, W. B. [s.l.] : Cambridge University Press. ISBN 0521818087. Kapitola Chapter 3: The Interior of Jupiter.  
  26. BODENHEIMER, P.. Calculations of the early evolution of Jupiter. Icarus. 1974, čís. 23, s. 319–325. Dostupné online [cit. 2007-02-01]. DOI:10.1016/0019-1035(74)90050-5.  
  27. Guillot, T.; Gautier, D.; Hubbard, W. B.. New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models. Icarus. 1997, čís. 130, s. 534–539. Dostupné online [cit. 2007-08-28]. DOI:10.1006/icar.1997.5812.  
  28. Various. Encyclopedia of the Solar System. Příprava vydání McFadden, Lucy-Ann; Weissman, Paul; Johnson, Torrence. 2.. vyd. [s.l.] : Academic Press, 2006. ISBN 0120885891. S. 412.  
  29. Horia, Yasunori; Sanoa, Takayoshi; Ikomaa, Masahiro; Idaa, Shigeru. On uncertainty of Jupiter's core mass due to observational errors. Proceedings of the International Astronomical Union. Cambridge University Press, 2007, čís. 3, s. 163–166. DOI:10.1017/S1743921308016554.  
  30. LODDERS, Katharina. Jupiter Formed with More Tar than Ice. The Astrophysical Journal. 2004, čís. 611, s. 587–597. Dostupné online [cit. 2007-07-03]. DOI:10.1086/421970.  
  31. A comparison of the interiors of Jupiter and Saturn. Planetary and Space Science. 1999, čís. 47, s. 1183–1200. Dostupné online [cit. 2007-08-28]. DOI:10.1016/S0032-0633(99)00043-4.  
  32. a b LANG, Kenneth R.. Jupiter: a giant primitive planet [online]. NASA, [cit. 2007-01-10]. Dostupné online.  
  33. ZÜTTEL. Materials for hydrogen storage. Materials Today. září 2003, čís. 6, s. 24–33. DOI:10.1016/S1369-7021(03)00922-2.  
  34. KLEZCEK, Josip; strana 202.
  35. Ingersoll, A. P.; Dowling, T. E.; Gierasch, P. J.; Orton, G. S.; Read, P. L.; Sanchez-Lavega, A.; Showman, A. P.; Simon-Miller, A. A.; Vasavada, A. R. Dynamics of Jupiter’s Atmosphere [online]. Lunar & Planetary Institute, [cit. 2007-02-01]. Dostupné online.  
  36. Surprising Jupiter: Busy Galileo spacecraft showed jovian system is full of surprises [online]. Příprava vydání Watanabe, Susan. NASA, 2006-02-25, [cit. 2007-02-20]. Dostupné online.  
  37. KERR, Richard A.. Deep, Moist Heat Drives Jovian Weather. Science. 2000, čís. 287, s. 946–947. Dostupné online [cit. 2007-02-24]. DOI:10.1126/science.287.5455.946b.  
  38. Strycker, P. D.; Chanover, N.; Sussman, M.; Simon-Miller, A.. A Spectroscopic Search for Jupiter's Chromophores. [s.l.] : American Astronomical Society. Dostupné online. Kapitola DPS meeting #38, #11.15.  
  39. a b c Gierasch, Peter J.; Nicholson, Philip D.. Jupiter [online]. World Book @ NASA, [cit. 2006-08-10]. Dostupné online.  
  40. DENNING, W. F.. Jupiter, early history of the great red spot on. Monthly Notices of the Royal Astronomical Society. 1899, čís. 59, s. 574–584. Dostupné online [cit. 2007-02-09].  
  41. KYRALA, A.. An explanation of the persistence of the Great Red Spot of Jupiter. Moon and the Planets. 1982, čís. 26, s. 105–107. Dostupné online [cit. 2007-08-28]. DOI:10.1007/BF00941374.  
  42. SOMMERIA, Jöel; Steven D. Meyers & Harry L. Swinney. Laboratory simulation of Jupiter's Great Red Spot. Nature. 1988-02-25. Dostupné online [cit. 2007-08-28]. DOI:10.1038/331689a0.  
  43. COVINGTON, Michael A.. Celestial Objects for Modern Telescopes. [s.l.] : Cambridge University Press, 2002. ISBN 0521524199. S. 53.  
  44. Cardall, C. Y.; Daunt, S. J. The Great Red Spot [online]. University of Tennessee, [cit. 2007-02-02]. Dostupné online.  
  45. Jupiter Data Sheet [online]. Space.com, [cit. 2007-02-02]. Dostupné online.  
  46. a b Jupiter's New Red Spot [online]. [cit. 2006-03-09]. Dostupné online.  
  47. STEIGERWALD, Bill. Jupiter's Little Red Spot Growing Stronger [online]. NASA, 2006-10-14, [cit. 2007-02-02]. Dostupné online.  
  48. GOUDARZI, Sara. New storm on Jupiter hints at climate changes [online]. USA Today, 2006-05-04, [cit. 2007-02-02]. Dostupné online.  
  49. BRAINERD, Brainerd. Jupiter's Magnetosphere. The Astrophysics Spectator [online]. 2004-11-22 [cit. 2008-08-10]. Dostupné online.  
  50. Radio Storms on Jupiter [online]. NASA, 2004-02-20, [cit. 2007-02-01]. Dostupné online.  
  51. SHOWALTER, M.A., Burns, J.A.; Cuzzi, J. N.; Pollack, J. B. Jupiter's ring system: New results on structure and particle properties. Icarus. 3 1987, čís. 69, s. 458–98. Dostupné online. DOI:10.1016/0019-1035(87)90018-2.  
  52. a b BURNS, J. A.; SHOWALTER, M.R.; HAMILTON, D.P.. The Formation of Jupiter's Faint Rings. Science. , roč. 1999, čís. 284, s. 1146–50. Dostupné online [cit. 2007-08-28]. DOI:10.1126/science.284.5417.1146. PMID 10325220.  
  53. HERBST; RIX, H.-W., Guenther, Eike; Stecklum, Bringfried; Klose, Sylvio Optical and Infrared Spectroscopy of Circumstellar Matter, ASP Conference Series, Vol. 188.. [s.l.] : [s.n.], 1999. Dostupné online. ISBN 1-58381-014-5.  
  54. MICHTCHENKO, T. A.; FERRAZ-MELLO, S.. Modeling the 5 : 2 Mean-Motion Resonance in the Jupiter–Saturn Planetary System. Icarus. 02 2001, čís. 149, s. 77–115. DOI:10.1006/icar.2000.6539.  
  55. Interplanetary Seasons [online]. Science@NASA, [cit. 2007-02-20]. Dostupné online.  
  56. IAN, Ridpath. Norton's Star Atlas. [s.l.] : Prentice Hall, 1998. (19th) ISBN 0582356555.  
  57. Favorable Appearances by Jupiter [online]. [cit. 2008-01-02]. Dostupné online.   (Horizons)
  58. Encounter with the Giant [online]. NASA, 1974, [cit. 2007-02-17]. Dostupné online.  
  59. XI, Z. Z.. The Discovery of Jupiter's Satellite Made by Gan-De 2000 Years Before Galileo. Acta Astrophysica Sinica. , roč. 1981, čís. 1, s. 87. Dostupné online [cit. 2007-10-27].  
  60. DONG, Paul. China's Major Mysteries: Paranormal Phenomena and the Unexplained in the People's Republic. [s.l.] : China Books, 2002. ISBN 0835126765.  
  61. WESTFALL, Richard S. Galilei, Galileo [online]. The Galileo Project, [cit. 2007-01-10]. Dostupné online.  
  62. MURDIN, Paul. Encyclopedia of Astronomy and Astrophysics. Bristol : Institute of Physics Publishing, 2000. ISBN 0122266900.  
  63. SP-349/396 Pioneer Odyssey—Jupiter, Giant of the Solar System [online]. NASA, 1974-08, [cit. 2006-08-10]. Dostupné online.  
  64. Roemer's Hypothesis [online]. [cit. 2007-01-12]. Dostupné online.  
  65. TENN, Joe. Edward Emerson Barnard [online]. Sonoma State University, 2006-03-10, [cit. 2007-01-10]. Dostupné online.  
  66. Amalthea Fact Sheet [online]. NASA JPL, 2001-11-01, [cit. 2007-02-21]. Dostupné online.  
  67. DUNHAM JR., Theodore. Note on the Spectra of Jupiter and Saturn. Publications of the Astronomical Society of the Pacific. 1933, čís. 45, s. 42–44. Dostupné online [cit. 2007-02-18]. DOI:10.1086/124297.  
  68. YOUSSEF, A.; MARCUS, P. S.. The dynamics of jovian white ovals from formation to merger. Icarus. 1 2003, čís. 162, s. 74–93. Dostupné online [cit. 2007-04-17]. DOI:10.1016/S0019-1035(02)00060-X.  
  69. WEINTRAUB, Rachel A.. How One Night in a Field Changed Astronomy [online]. NASA, 2005-09-25, [cit. 2007-02-18]. Dostupné online.  
  70. GARCIA, Leonard N. The Jovian Decametric Radio Emission [online]. NASA, [cit. 2007-02-18]. Dostupné online.  
  71. KLEIN, M. J.; GULKIS, S.; BOLTON, S. J.. Jupiter's Synchrotron Radiation: Observed Variations Before, During and After the Impacts of Comet SL9 [online]. NASA, 1996, [cit. 2007-02-18]. Dostupné online.  
  72. a b WONG, Al. Galileo FAQ - Navigation [online]. NASA, 1998-05-28, [cit. 2006-11-28]. Dostupné online.  
  73. HIRATA, Chris. Delta-V in the Solar System [online]. [cit. 2006-11-28]. Dostupné online.  
  74. PACNER, Karel; VÍTEK, Antonín. Půlstoletí kosmonautiky. Praha : Paráda, 2008. ISBN 978-80-87027-74-4. Kapitola Ke vzdáleným světům, s. 180.  
  75. LASHER, Lawrence. Pioneer Project Home Page [online]. NASA Space Projects Division, 2006-08-01, [cit. 2006-11-28]. Dostupné online.  
  76. CHAN, K.; PAREDES, E. S.; RYNE, M. S.. Ulysses Attitude and Orbit Operations: 13+ Years of International Cooperation [online]. American Institute of Aeronautics and Astronautics, 2004, [cit. 2006-11-28]. Dostupné online.  
  77. HANSEN, C. J., Bolton, S. J.; Matson, D. L.; Spilker, L. J.; Lebreton, J. P. The Cassini-Huygens flyby of Jupiter. Icarus. 1 2004, čís. 172, s. 1–8. Dostupné online. DOI:10.1016/j.icarus.2004.06.018.  
  78. Mission Update: At Closest Approach, a Fresh View of Jupiter [online]. [cit. 2007-07-27]. Dostupné online.  
  79. Pluto-Bound New Horizons Provides New Look at Jupiter System [online]. [cit. 2007-07-27]. Dostupné online.  
  80. New Horizons targets Jupiter kick [online]. 2007-01-19, [cit. 2007-01-20]. Dostupné online.  
  81. ALEXANDER, Amir. New Horizons Snaps First Picture of Jupiter [online]. The Planetary Society, 2006-12-19. Dostupné online.  
  82. a b MCCONNELL. Galileo: Journey to Jupiter [online]. NASA Jet Propulsion Laboratory, 2003-04-13, [cit. 2006-11-28]. Dostupné online.  
  83. MAGALHÃES, Julio. Galileo Probe Mission Events [online]. NASA Space Projects Division, 1996-12-10, [cit. 2007-02-02]. Dostupné online.  
  84. VÍTEK, Antonín. SPACE 40. Velká encyklopedie družic a kosmických sond [online]. REV. 2011-8-6, [cit. 2011-08-07]. Kapitola 2011-040A - Juno. Dostupné online.  
  85. HAVLÍČEK, Antonín. Databáze kosmických sond pro průzkum těles sluneční soustavy [online]. REV. 2011-8-3, [cit. 2011-08-07]. Kapitola Juno. Dostupné online.  
  86. TALEVI, Monica; BROWN, Dwayne. NASA and ESA Prioritize Outer Planet Missions [online]. 2009-02-18, [cit. 2009-02-18]. Dostupné online.  
  87. RINCON, Paul. Jupiter in space agencies' sights. BBC News [online]. 2009-02-18 [cit. 2009-02-28]. Dostupné online.  
  88. VOLONTE, Sergio. Cosmic Vision 2015-2025 Proposals. ESA [online]. 2007-07-10 [cit. 2009-02-18]. Dostupné online.  
  89. Laplace: A mission to Europa & Jupiter system [online]. [cit. 2009-01-23]. Dostupné online.  
  90. Společná americká a evropská mise k měsícům Jupiteru dostala zelenou [online]. [cit. 2011-02-11]. Dostupné online.  
  91. BERGER, Brian. White House scales back space plans. MSNBC [online]. 2005-02-07 [cit. 2007-01-02]. Dostupné online.  
  92. ATZEI, Alessandro. Jovian Minisat Explorer [online]. ESA, 2007-04-27, [cit. 2008-05-08]. Dostupné online.  
  93. MUSOTTO, S., Varadi, F.; Moore, W. B.; Schubert, G. Numerical simulations of the orbits of the Galilean satellites. Icarus. 2002, čís. 159, s. 500–504. Dostupné online. DOI:10.1006/icar.2002.6939.  
  94. Schenk, Paul M.; Chapman, Clark R.; Zahnle, Kevin; and Moore, Jeffrey M.; Chapter 18: Ages and Interiors: the Cratering Record of the Galilean Satellites, in Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, 2004
  95. JEWITT, D. C.; SHEPPARD, S.; PORCO, C.. Jupiter: The Planet, Satellites and Magnetosphere. editoři: Bagenal, F.; Dowling, T.; McKinnon, W. [s.l.] : Cambridge University Press, 2004. Dostupné online. ISBN 0521818087.  
  96. NESVORNÝ, D., Alvarellos, J. L. A.; Dones, L.; Levison, H. F. Orbital and Collisional Evolution of the Irregular Satellites. The Astronomical Journal. 1 2003, čís. 126, s. 398–429. Dostupné online [cit. 2007-02-19]. DOI:10.1086/375461.  
  97. The Galilean Satellites. Science. 1999, čís. 286, s. 77–84. DOI:10.1126/science.286.5437.77. PMID 10506564.  
  98. KERR, Richard A.. Did Jupiter and Saturn Team Up to Pummel the Inner Solar System?. Science. 2004, čís. 306, s. 1676. Dostupné online [cit. 2007-08-28]. DOI:10.1126/science.306.5702.1676a. PMID 15576586.  
  99. List Of Jupiter Trojans [online]. IAU Minor Planet Center, [cit. 2009-07-10]. Dostupné online.  
  100. OVERBYE, Dennis. Hubble Takes Snapshot of Jupiter’s ‘Black Eye’. New York Times [online]. 2009-07-24 [cit. 2009-07-25]. Dostupné online.  
  101. LOVETT, Richard A.. Stardust's Comet Clues Reveal Early Solar System. National Geographic News [online]. 2006-12-15 [cit. 2007-01-08]. Dostupné online.  
  102. NAKAMURA, T.; KURAHASHI, H.. Collisional Probability of Periodic Comets with the Terrestrial Planets: An Invalid Case of Analytic Formulation. Astronomical Journal. 2 1998, čís. 115, s. 848–854. Dostupné online [cit. 2007-08-28]. DOI:10.1086/300206.  
  103. HORNER, J.; JONES, B. W.. Jupiter - friend or foe? I: the asteroids. International Journal of Astrobiology. 2008, čís. 7, s. 251–261. Dostupné online [cit. 2009-07-27]. DOI:10.1017/S1473550408004187.  
  104. OVERBYTE, Dennis. Jupiter: Our Comic Protector?. The New York Times [online]. 2009-07-25 [cit. 2009-07-27]. Dostupné online.  
  105. ISSHI, Tabe; JUN-ICHI, Watanabe; MICHIWO, Jimbo. Discovery of a Possible Impact SPOT on Jupiter Recorded in 1690. Publications of the Astronomical Society of Japan. 02 1997, čís. 49, s. L1–L5. Dostupné online.  
  106. BAALKE, Ron. Comet Shoemaker-Levy Collision with Jupiter [online]. NASA, [cit. 2007-01-02]. Dostupné online.  
  107. BRITT, Robert R.. Remnants of 1994 Comet Impact Leave Puzzle at Jupiter [online]. space.com, [cit. 2007-02-20]. Dostupné online.  
  108. STAFF. Amateur astronomer discovers Jupiter collision [online]. ABC News online, 2009-07-21, [cit. 2009-07-21]. Dostupné online.  
  109. SALWAY, Mike. Breaking News: Possible Impact on Jupiter, Captured by Anthony Wesley [online]. IceInSpace, 2009-07-19, [cit. 2009-07-19]. Dostupné online.  
  110. GROSSMAN, Lisa. Jupiter sports new 'bruise' from impact. New Scientist [online]. . Dostupné online.  
  111. Gary W. Kronk's Cometography [online]. Gary W. Kronk, [cit. 2011-06-12]. Kapitola 45P/Honda-Mrkos-Pajdusakova. Dostupné online. (anglicky) 
  112. TICHÝ, Miloš. Tekutá voda uvnitř komety [online]. Observatoř Kleť, 2011-04-07, [cit. 2011-06-12]. Dostupné online.  
  113. HEPPENHEIMER, T. A.. Colonies in Space, Chapter 1: Other Life in Space [online]. National Space Society, 2007, [cit. 2007-02-26]. Dostupné online.  
  114. Life on Jupiter [online]. Encyclopedia of Astrobiology, Astronomy & Spaceflight, [cit. 2006-03-09]. Dostupné online.  
  115. SAGAN, C.; SALPETER, E. E.. Particles, environments, and possible ecologies in the Jovian atmosphere. The Astrophysical Journal Supplement Series. 1976, čís. 32, s. 633–637. DOI:10.1086/190414.  
  116. Stargazers prepare for daylight view of Jupiter [online]. ABC News Online, 2005-06-15, [cit. 2008-02-28]. Dostupné online.  
  117. ROGERS, J. H.. Origins of the ancient constellations: I. The Mesopotamian traditions. Journal of the British Astronomical Association,. 1998, čís. 108, s. 9–28. Dostupné online [cit. 2008-04-22].  
  118. ARNETT, Bill. Planetary Linguistics [online]. The Nine Planets Solar System Tour, 2007-01-28, [cit. 2007-03-08]. Dostupné online.  
  119. Guru [online]. Indian Divinity.com, [cit. 2007-02-14]. Dostupné online.  
  120. FALK, Michael. Astronomical Names for the Days of the Week. Journal of the Royal Astronomical Society of Canada. 1999, čís. 93, s. 122–33. Dostupné online [cit. 2007-02-14].  
  121. See for example: IAUC 2844: Jupiter; 1975h. International Astronomical Union [online].  [cit. 2007-07-29]. Dostupné online.  That particular word has been in use since at least 1966. Viz Query Results from the Astronomy Database [online]. Smithsonian/NASA, [cit. 2007-07-29]. Dostupné online.  
  122. Jovial [online]. Dictionary.com, [cit. 2007-07-29]. Dostupné online.  

Literatura[editovat | editovat zdroj]

  • BAGENAL, W. B. a kolektiv; DOWLING, T. E; MCKINNON. Jupiter: The planet, satellites, and magnetosphere. Cambridge : Cambridge University Press, 2004. 748 s. Dostupné online. ISBN 0521818087. (anglicky) 
  • BEEBE, Reta. Jupiter: The Giant Planet. 2.. vyd. Washington, D.C. : Smithsonian Institution Press, 1996. 261 s. ISBN 1560986859. (anglicky) 
  • RIDPATH, Ian. Hvězdy a planety. 1.. vyd. Praha : Euromedia Group (Knižní klub), 2004. ISBN 8024211939. (česky) 

Externí odkazy[editovat | editovat zdroj]