Molybden

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Cr

Mo

W

NiobMolybdenTechnecium

[Kr] 4d5 5s1

98 Mo
42
↓Periodická tabulka prvků↓
Obecné
Název (lat.), značka, číslo Molybden (Molybdaenum), Mo , 42
Registrační číslo CAS 7439-98-7
Umístění v PSP 6 skupina,

5. perioda, blok d

Char. skupina Přechodné kovy
Hmotnostní zlomekzem. kůře 1,5 až 8 ppm
Konc. v mořské vodě 0,01 mg/l
Počet přírodních izotopů 7
Vzhled Šedobílý, tvrdý a křehký kov
Molybden
Emisní spektrum
Atomové vlastnosti
Rel. at. hmotnost 95,96
Atomový poloměr 139 pm
Kovalentní poloměr 154 pm
van der Waalsův poloměr pm
Elektronová konfigurace [Kr] 4d5 5s1
Elektronů v hladinách 2, 8, 18, 13, 1
Oxidační číslo -II, -I, I, II, III, IV, V, VI
Fyzikální vlastnosti
Skupenství Pevné
Krystalová struktura Krychlová, plošně centrovaná
Hustota 10,28 g/cm3
Kritická hustota {{{kritická hustota}}} g cm−3
Tvrdost 5,5 (Mohsova stupnice)
Magnetické chování Paramagnetický
Měrná magnetická susceptibilita {{{magnetická susceptibilita}}}
Teplota tání 2622,85 °C (2896 K)
Teplota varu 4638,85 °C (4912 K)
Kritická teplota {{{kritická teplota c}}} °C ({{{kritická teplota k}}} K)
Teplota trojného bodu {{{teplota trojného bodu c}}} °C ({{{teplota trojného bodu k}}} K)
Teplota přechodu do supravodivého stavu {{{teplota supravodivosti}}}
Teplota změny krystalové modifikace {{{teplota změny modifikace}}}
Tlak trojného bodu {{{tlak trojného bodu}}} kPa
Kritický tlak {{{kritický tlak}}} kPa
Molární objem 9,38 · 10−6 m3/mol
Dynamický viskozitní koeficient {{{dynamický viskozitní koef.}}}
Kinematický viskozitní koeficient {{{kinematický viskozitní koef.}}}
Tlak nasycené páry 100 Pa při 3312K
Rychlost zvuku 6190 m/s
Index lomu {{{index lomu}}}
Relativní permitivita {{{relativní permitivita}}}
Elektrická vodivost 18,7 × 106 S·m−1
Měrný elektrický odpor 53,4 nΩ·m
Teplotní součinitel el. odporu {{{součinitel elektrického odporu}}}
Tepelná vodivost 138 W·m−1·K−1
Povrchové napětí {{{povrchové napětí}}}
Termodynamické vlastnosti
Skupenské teplo tání 37,48 KJ/mol
Specifické teplo tání {{{spec. teplo tání}}}
Skupenské teplo varu 598 KJ/mol
Specifické teplo varu {{{spec. teplo varu}}}
Molární atomizační entalpie {{{molární atomizační entalpie}}}
Entalpie fázové přeměny modifikace {{{entalpie fázové přeměny modifikace}}}
absolutní entropie {{{absolutní entropie}}}
Měrná tepelná kapacita 24,06 Jmol-1K-1
Molární tepelná kapacita {{{molární tepelná kapacita}}}
Spalné teplo na m³
Spalné teplo na kg
Různé
Van der Waalsovy konstanty {{{van der Waalsovy konstanty}}}
Teplotní součinitel délkové roztažnosti {{{součinitel délkové roztažnosti}}}
Redoxní potenciál -0,2 V
Elektronegativita 2,16 (Paulingova stupnice)
Ionizační energie 1: 684,3 KJ/mol
2: 1560 KJ/mol
3: 1618 KJ/mol
Iontový poloměr 62 pm
Izotopy
izo výskyt t1/2 rozpad en. MeV prod.
92Mo 11,84% je stabilní s 50 neutrony
93Mo umělý 4 × 103 let ε - 93Nb
94Mo 9,25% je stabilní s 52 neutrony
95Mo 15,92% je stabilní s 53 neutrony
96Mo 16,68% je stabilní s 54 neutrony
97Mo 9,55% je stabilní s 55 neutrony
98Mo 24,13% je stabilní s 56 neutrony
99Mo umělý 65,24 hodiny β 0,436 99Tc
γ 0,74 99Tc
100Mo 9,63 7,8 × 1018 let 2 × β 3,04 100Ru
Bezpečnost


R-věty
S-věty
Není-li uvedeno jinak, jsou použity jednotky SI a STP.

Molybden, chemická značka Mo, (lat. Molybdaenum), je kovový prvek 6. skupiny periodické soustavy prvků. Praktické využití nalézá hlavně jako složka vysoce legovaných ocelí a při výrobě průmyslových katalyzátorů.

Základní fyzikálně-chemické vlastnosti[editovat | editovat zdroj]

Minerál molybdenit

Elementární molybden je to stříbřitý až šedobílý, tvrdý a křehký kov se značně vysokým bodem tání. Za teplot pod 0,915 K je supravodičem I typu. Krystaluje v těsně centrované kubické mřížce.

Na vzduchu je za normální teploty stálý, stejně tak je odolný i vůči působení vody. S vodíkem nereaguje a nevytváří žádné hydridy.

Vůči působení minerálních kyselin je poměrně stálý, především oxidačně působící kyseliny pasivují jeho povrch a chrání jej tak před dalším napadením. Stejně tak je odolný vůči roztokům alkalických hydroxidů.

Poměrně snadno se rozpouští v kyselině chlorovodíkové i lučavce královské. Nejsnáze se kovový molybden rozkládá alkalickým tavením například se směsí dusičnanu draselného a hydroxidu sodného (KNO3 + NaOH). Po zahřátí reaguje s mnoha nekovy za vzniku převážně intersticiálních sloučenin.

Ve sloučeninách se molybden vyskytuje v řadě různých mocenství od Mo+2 a po Mo+6 a v rozsáhlé škále různých barev.

Historie[editovat | editovat zdroj]

Roku 1778 švédský chemik C. W. Scheele vyizoloval z minerálu molybdenitu oxid dosud neznámého prvku. P. J. Hjelm připravil z tohoto oxidu kovový molybden redukcí dřevěným uhlím. Název molybden pochází z řeckého pojmenování olova molybdos, které označovalo jakýkoliv měkký černý materiál vhodný ke psaní.

Výskyt a výroba[editovat | editovat zdroj]

Těžba v roce 2005

Molybden je na Zemi poměrně vzácný, jeho obsah se odhaduje na 1,5–8 mg/kg v zemské kůře. V mořské vodě se však molybden nachází v koncentraci až 0,01 mg/l. Ve vesmíru připadá jeden atom molybdenu na 10 miliard atomů vodíku.

V rudách se vyskytuje jen v nízkých koncentracích. Nejvýznamnější rudou je molybdenit (sulfid molybdeničitý, MoS2), jehož ložiska se nacházejí především v Coloradu v USA. Dalšími rudami jsou wulfenit, molybdenan olovnatý, (PbMoO4) a powellit (Ca(Mo,W)O4).

Molybdenit jako MoS2 se těží buď samostatný nebo se získává při výrobě mědi. Po přečištění flotací se pražením převede na oxid molybdenový podle rovnice:

2 MoS2 + 7 O2 → 2 MoO3 + 4 SO2

Ten se buď využívá přímo, nebo se aluminotermicky převede na ferromolybden, který nachází použití při výrobě korozivzdorných ocelí.

Čistý molybden se vyrábí redukcí oxidu molybdenu vodíkem.

MoO3 + 3 H2 → Mo + 3 H2O

Ionty molybdenu jsou také obsaženy v proteinovém komplexu nitrogenáza, který je využíván mutualistickými fixátory (zpravidla gramnegativní bakterie, mikrosymbionti - zejména Rhizobium) atmosferického molekulárního dusíku, přičemž dochází k obohacování půdy.

Využití[editovat | editovat zdroj]

Základní praktické využití nalézá molybden v metalurgii při výrobě speciálních ocelí. Již poměrně malé množství molybdenu ve slitině výrazně zvyšuje její tvrdost, mechanickou a korozní odolnost. Proto se z molybdenových ocelí vyrábějí silně mechanicky namáhané součásti strojů jako například hlavně děl, geologické vrtné hlavice a nástroje pro kovoobrábění. Také se z molybdenu dělá povrchová vrstva pístních kroužků. V chemickém průmyslu je materiálem pro reaktory, pracující v silně korozivním prostředí za vysokých tlaků a teplot.

Používá se pro výrobu petrochemických katalyzátorů, sloužících k odstranění sirných sloučenin z ropy a ropných produktů.

Sloučeniny[editovat | editovat zdroj]

Chemie sloučenin molybdenu je značně pestrá a komplikovaná. Již pouhý fakt, že se molybden vyskytuje v 5 různých valenčních stavech od Mo+2 a po Mo+6, které mohou poměrně snadno přecházet mezi sebou je důvodem, že chemie molybdenu je spíše předmětem diplomových prací než praktického uplatnění v běžném životě. Většina chemiků se jistě setkala s faktem, že mnohé z bohatého spektra jeho sloučenin vykazují nízkou rozpustnost, což v praxi znamená, že je poměrně velmi obtížné udržet rozpuštěný molybden kompletně v roztoku po delší dobu. Analýza obsahu molybdenu v roztoku se pak někdy stává soutěží s časem, kdy je nutno provést příslušnou operaci dříve, než z roztoku vypadne nějaká pestře zbarvená nerozpustná sloučenina molybdenu.

Pro molybden je navíc typická tvorba tzv. heteropolykyselin, polymerních sloučenin molybdenu, kyslíku a vodíku bez přesného stechiometrického vzorce.

V praxi má technologický význam například sulfid molybdeničitý, MoS2 – černá práškovitá sloučenina, která se používá jako lubrikant (mazadlo) v prostředích s vysokou teplotou nebo s extrémním tlakovým namáháním.

Dále se můžeme prakticky setkat se solemi kyseliny molybdenové H2MoO4 – molybdenany, které jsou složkou některých barevných pigmentů a nalézají uplatnění v analytické chemii.

Biologický význam[editovat | editovat zdroj]

Přestože je molybden přítomen v živých tkáních živočichů a rostlin pouze ve stopovém množství, je nezbytný pro správné fungování běžných životních funkcí. Bylo prokázáno, že se aktivně účastní v řadě enzymatických systémů, které jsou zodpovědné za metabolismus železa a detoxikaci sulfidů. Významnou roli hraje molybden i prevenci zubního kazu a jeho přítomnost zvyšuje tvrdost zubní skloviny.

Nedostatek molybdenu může vést k anémii, přispívá k zvýšenému výskytu záchvatů astmatu, zvýšené kazivosti zubů a zhoršení ochrany proti infekci močového měchýře. Podle některých zdrojů je nedostatek molybdenu ve stravě příčinou depresivních stavů a může vést k impotenci.

Hlavním přirozeným zdrojem molybdenu v potravě jsou luštěniny, celozrnné pečivo a listová zelenina.

Literatura[editovat | editovat zdroj]

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy[editovat | editovat zdroj]



Periodická tabulka chemických prvků
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
H (přehled) He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
 
*Lanthanoidy  La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
**Aktinoidy  Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
 
Skupiny prvků: Kovy · Nekovy · Polokovy | Blok s · Blok p · Blok d · Blok f