Cer

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání



Ce

Th

LanthanCerPraseodym

[Kr] 4f1 5d1 6s2

Ce
58
↓Periodická tabulka prvků↓
Obecné
Název (lat.), značka, číslo Cer (Cerium), Ce , 58
Registrační číslo CAS 7440 – 45-1
Umístění v PSP skupina,

6. perioda, blok f

Char. skupina Lanthanoidy
Hmotnostní zlomekzem. kůře ppm
Konc. v mořské vodě {{{koncentrace v mořské vodě}}} mg/l
Počet přírodních izotopů
Vzhled šedobílá látka
Cerium2.jpg
[[Soubor:{{{spektrum}}}|255px|Emisní spektrum]]
Atomové vlastnosti
Rel. at. hmotnost 140,116 g·mol−1
Atomový poloměr 181,8 pm pm
Kovalentní poloměr 204 pm pm
van der Waalsův poloměr pm
Elektronová konfigurace [Kr] 4f1 5d1 6s2
Elektronů v hladinách
Oxidační číslo III, IV
Fyzikální vlastnosti
Skupenství pevné
Krystalová struktura krychová, plošne centrovaná
Hustota 6,770 kg·dm−3
Kritická hustota {{{kritická hustota}}} g cm−3
Tvrdost 2,5 (Mohsova stupnice)
Magnetické chování Paramagnetické
Měrná magnetická susceptibilita {{{magnetická susceptibilita}}}
Teplota tání 794,85 °C (1 068 K)
Teplota varu 3 442,85 °C (3 716 K)
Kritická teplota {{{kritická teplota c}}} °C ({{{kritická teplota k}}} K)
Teplota trojného bodu {{{teplota trojného bodu c}}} °C ({{{teplota trojného bodu k}}} K)
Teplota přechodu do supravodivého stavu {{{teplota supravodivosti}}}
Teplota změny krystalové modifikace {{{teplota změny modifikace}}}
Tlak trojného bodu {{{tlak trojného bodu}}} kPa
Kritický tlak {{{kritický tlak}}} kPa
Molární objem · 10−6 m3/mol
Dynamický viskozitní koeficient {{{dynamický viskozitní koef.}}}
Kinematický viskozitní koeficient {{{kinematický viskozitní koef.}}}
Tlak nasycené páry {{{tlak nasycené páry}}}
Rychlost zvuku {{{rychlost zvuku}}} m/s
Index lomu {{{index lomu}}}
Relativní permitivita {{{relativní permitivita}}}
Elektrická vodivost {{{elektrická vodivost}}} S·m−1
Měrný elektrický odpor 828 nΩ·m
Teplotní součinitel el. odporu {{{součinitel elektrického odporu}}}
Tepelná vodivost 11,3 W·m−1·K−1
Povrchové napětí {{{povrchové napětí}}}
Termodynamické vlastnosti
Skupenské teplo tání {{{skup. teplo tání}}}
Specifické teplo tání 5,46 kJ/mol
Skupenské teplo varu {{{skup. teplo varu}}}
Specifické teplo varu
Molární atomizační entalpie
Entalpie fázové přeměny modifikace {{{entalpie fázové přeměny modifikace}}}
absolutní entropie
Měrná tepelná kapacita
Molární tepelná kapacita {{{molární tepelná kapacita}}}
Spalné teplo na m³ {{{spalné teplo na m3}}}
Spalné teplo na kg {{{spalné teplo na kg}}}
Různé
Van der Waalsovy konstanty {{{van der Waalsovy konstanty}}}
Teplotní součinitel délkové roztažnosti {{{součinitel délkové roztažnosti}}}
Redoxní potenciál V
Elektronegativita 1,12 (Paulingova stupnice)
Ionizační energie
Iontový poloměr pm
Bezpečnost


R-věty {{{R-věty}}}
S-věty {{{S-věty}}}
Není-li uvedeno jinak, jsou použity jednotky SI a STP.

Cer, chemická značka Ce, (lat. Cerium) je šedavě bílý, vnitřně přechodný kovový prvek, druhý člen skupiny lanthanoidů. Hlavní uplatnění nalézá v metalurgickém průmyslu při výrobě speciálních slitin a nebo jejich deoxidaci, je složkou některých skel a průmyslových katalyzátorů.

Základní fyzikálně-chemické vlastnosti[editovat | editovat zdroj]

Cer vzhledově připomíná železo, je to šedavě bílý přechodný kov, který je však značně měkký a snadno tvárný.

Chemicky je cer značně reaktivním prvkem, po europiu nejreaktivnějším lanthanoidem. Za mírně zvýšené teploty (kolem 80 °C) reaguje se vzdušným kyslíkem (hoří) za vzniku velmi stabilního oxidu ceričitého CeO2. S vodou reaguje cer za vzniku plynného vodíku, snadno se rozpouští v běžných minerálních kyselinách.

Ve sloučeninách se vyskytuje v mocenství Ce+3 a jako jediný z lanthanoidů tvoří i stabilní sloučeniny s valencí Ce+4. Soli Ce+3 jsou obvykle bílé, sloučeniny čtyřmocného ceru mají barvu žlutou až oranžovou.

Objevili jej současně roku 1803 švédský chemik Jöns Jacob BerzeliusWilhelm Hisinger a zároveň v Německu Martin Heinrich Klaproth.

Výskyt a výroba[editovat | editovat zdroj]

Cer je v zemské kůře nejvíce zastoupeným prvkem ze skupiny lanthanoidů – vyskytuje se zde v koncentraci asi 46–60 mg/kg. V mořské vodě je jeho koncentrace kolem 0,0004 mg/l. Ve vesmíru připadá jeden atom ceru na 30 miliard atomů vodíku.

V přírodě se cer vyskytuje pouze ve formě sloučenin. Neexistují však ani minerály, v nichž by se některé lanthanoidy (prvky vzácných zemin) vyskytovaly samostatně, ale vždy se jedná o minerály směsné, které obsahují prakticky všechny prvky této skupiny. Mezi nejznámější patří monazity (Ce, La, Th, Nd, Y)PO4xenotim, chemicky fosforečnany lanthanoidů a dále bastnäsity (Ce, La, Y)CO3F – směsné flourouhličitany prvků vzácných zemin.

Velká ložiska těchto rud se nalézají ve Skandinávii, USA, ČíněVietnamu. Významným zdrojem jsou i fosfátové suroviny – apatity z poloostrova Kola v Rusku

Při průmyslové výrobě prvků vzácných se jejich rudy nejprve louží směsí kyseliny sírovéchlorovodíkové a ze vzniklého roztoku solí se přídavkem hydroxidu sodného vysráží hydroxidy.

K separaci ceru od zbylých lanthanoidů se obvykle využívá skutečnosti, že hydroxid ceričitý Ce(OH)4 podléhá hydrolýze již v relativně kyselých roztocích (kolem pH = 2). Směs lanthanoidů se proto nejprve oxiduje působením manganistanu draselného KMnO4, který převede veškerý cer do mocenství Ce+4 a postupnou neutralizací kyselého roztoku se vysráží prakticky čistý nerozpustný hydroxid ceričitý.

Kovový cer se obvykle vyrábí elektrolýzou taveniny směsi chloridu ceritého CeCl3chloridu sodného NaCl v grafitové nádobě. Cer se přitom vylučuje na grafitové katodě, zatímco na anodě dochází k uvolňování plynného chloru.

Použití a sloučeniny[editovat | editovat zdroj]

Síranu ceričitý

Vzhledem k vysokému zastoupení ceru v rudách vzácných zemin je tohoto prvku na trhu relativně nadbytek, protože vzniká částečně jako přebytek při výrobě vysoce žádaných lanthanoidů – především europia nebo samaria .

Základním průmyslové využití nalézá cer v metalurgii.

  • Jeho vysoká afinita ke kyslíkusíře se uplatní při odkysličování a desulfuraci vyráběných kovů a slitin.
  • Oceli nebo litina s obsahem malých množství ceru vykazují vyšší tvárnost a kujnost a mají vyšší mechanickou odolnost proti nárazu.
  • Přídavek ceru do slitin na bázi hořčíkuhliníku zlepšuje jejich odolnost proti teplotním změnám usnadňuje odlévání složitějších výrobků.
  • Slitina s wolframem slouží pro výrobu elektrod pro svařování a řezání kovů elektrickým obloukem. Obloukové lampy, sloužící především jako světelné zdroje při natáčení filmů mívají často elektrody ze slitin s obsahem ceru a lanthanu.

Významné uplatnění nalézají sloučeniny ceru, především oxid ceričitý CeO2 ve sklářském průmyslu. Jejich přídavek do skloviny slouží hlavně k odbarvování vyrobeného skla a snižuje jeho propustnost pro ultrafialové záření.

Katalyzátory s obsahem ceru se používají i v petrochemii při krakování ropy.

Brusné a lešticí práškové materiály, používané při výrobě optických součástek (přesné čočky, zrcadla do teleskopů, …) obsahují často významný podíl sloučenin ceru.

Soli čtyřmocného ceru jsou silná oxidační činidla a především síran ceričitý Ce(SO4)2 je často používán v analytické chemii pro oxidaci analyzované látky v redoxních titracích. Stejně tak nalézá uplatnění v preparativní chemii při oxidační syntéze látek.

Literatura[editovat | editovat zdroj]

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy[editovat | editovat zdroj]



Periodická tabulka chemických prvků
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
H (přehled) He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
 
*Lanthanoidy  La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
**Aktinoidy  Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
 
Skupiny prvků: Kovy · Nekovy · Polokovy | Blok s · Blok p · Blok d · Blok f