Platina

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Pd

Pt

Ds

IridiumPlatinaZlato

Pt
78
↓Periodická tabulka prvků↓
Obecné
Název (lat.), značka, číslo Platina (Platinum), Pt , 78
Registrační číslo CAS 7440-06-4
Umístění v PSP skupina,

. perioda, blok

Char. skupina Přechodné kovy
Hmotnostní zlomekzem. kůře ppm
Konc. v mořské vodě mg/l
Počet přírodních izotopů
Vzhled šedobílý kov
Platina
Emisní spektrum
Atomové vlastnosti
Rel. at. hmotnost 195,084(9)
Atomový poloměr 139 pm
Kovalentní poloměr 136 pm
van der Waalsův poloměr 175 pm
Elektronová konfigurace
Elektronů v hladinách
Oxidační číslo 6, 5, 4, 3, 2, 1, −1, −2 ​
Fyzikální vlastnosti
Skupenství Pevné
Krystalová struktura
Hustota 21,45 g/cm³ (19,77 g/cm³ při teplotě tání)
Kritická hustota {{{kritická hustota}}} g cm−3
Tvrdost 4–4,5 (Mohsova stupnice)
Magnetické chování Paramagnetické
Měrná magnetická susceptibilita {{{magnetická susceptibilita}}}
Teplota tání 1768,25 °C (2041,4 K)
Teplota varu 3825 °C (4098 K)
Kritická teplota {{{kritická teplota c}}} °C ({{{kritická teplota k}}} K)
Teplota trojného bodu {{{teplota trojného bodu c}}} °C ({{{teplota trojného bodu k}}} K)
Teplota přechodu do supravodivého stavu {{{teplota supravodivosti}}}
Teplota změny krystalové modifikace {{{teplota změny modifikace}}}
Tlak trojného bodu {{{tlak trojného bodu}}} kPa
Kritický tlak {{{kritický tlak}}} kPa
Molární objem · 10−6 m3/mol
Dynamický viskozitní koeficient {{{dynamický viskozitní koef.}}}
Kinematický viskozitní koeficient {{{kinematický viskozitní koef.}}}
Tlak nasycené páry
Rychlost zvuku m/s
Index lomu {{{index lomu}}}
Relativní permitivita {{{relativní permitivita}}}
Elektrická vodivost S·m−1
Měrný elektrický odpor 105 μΩ
Teplotní součinitel el. odporu {{{součinitel elektrického odporu}}}
Tepelná vodivost 71,6 W·m−1·K−1
Povrchové napětí {{{povrchové napětí}}}
Termodynamické vlastnosti
Skupenské teplo tání
Specifické teplo tání {{{spec. teplo tání}}}
Skupenské teplo varu
Specifické teplo varu {{{spec. teplo varu}}}
Molární atomizační entalpie {{{molární atomizační entalpie}}}
Entalpie fázové přeměny modifikace {{{entalpie fázové přeměny modifikace}}}
absolutní entropie {{{absolutní entropie}}}
Měrná tepelná kapacita {{{měrná tepelná kapacita}}}
Molární tepelná kapacita {{{molární tepelná kapacita}}}
Spalné teplo na m³
Spalné teplo na kg
Různé
Van der Waalsovy konstanty {{{van der Waalsovy konstanty}}}
Teplotní součinitel délkové roztažnosti {{{součinitel délkové roztažnosti}}}
Redoxní potenciál V
Elektronegativita {{{elektronegativita}}} (Paulingova stupnice)
Ionizační energie
Iontový poloměr {{{iontový poloměr}}} pm
Izotopy
izo výskyt t1/2 rozpad en. MeV prod.
5 -
{{{výskyt}}} je stabilní s neutrony
je stabilní s neutrony
je stabilní s neutrony
Bezpečnost


R-věty
S-věty
Není-li uvedeno jinak, jsou použity jednotky SI a STP.
Na tento článek je přesměrováno heslo Platinum. Tento článek pojednává o kovu. O hudebním albu Mika Oldfielda pojednává článek Platinum (Mike Oldfield).

Platina, chemická značka Pt, lat. Platinum, je velmi těžký a chemicky mimořádně odolný drahý kov stříbřitě bílé barvy.

Základní fyzikálně-chemické vlastnosti[editovat | editovat zdroj]

Ušlechtilý, odolný, kujný a tažný kov, elektricky i tepelně středně dobře vodivý. V přírodě se vyskytuje zejména ryzí.

Název platina vznikl jako zdrobnělina ze španělského slova plata (stříbro), do češtiny ho můžeme přeložit jako stříbříčko.

Snadno se rozpouští v lučavce královské a pomalu se rozpouští i v kyselině chlorovodíkové za přítomnosti vzdušného kyslíku nebo peroxidu vodíku. Společně s osmiem a iridiem patří k prvkům s největší známou hustotou.

Zajímavá je schopnost platiny pohlcovat značné objemy plynného vodíku. Platina vykazuje také značné katalytické vlastnosti, a to jak ve sloučeninách, tak ve formě kovu.

Využití[editovat | editovat zdroj]

Automobilový katalyzátor

Vzhledem ke svým mechanickým vlastnostem a chemické odolnosti jsou platina a především její slitiny s rhodiem a iridiem používány na výrobu odolného chemického nádobí pro rozklady vzorků tavením nebo spalováním za vysokých teplot. Ve sklářském průmyslu je základním materiálem speciálních pecí na výrobu optických vláken.

V chemickém průmyslu je platina a především její sloučeniny využívána jako všestranný katalyzátor v řadě organických syntéz. Katalytických vlastností jemně rozptýlené kovové platiny se využívá i v autokatalyzátorech, které slouží k odstranění nežádoucích látek z výfukových plynů.

Ve farmaceutickém průmyslu jsou komplexní sloučeniny cis-platiny základem velmi účinných cytostatik, tedy látek potlačujících rakovinné bujení.

Značně velkých objemů dosahuje výroba termočlánků pro přesné měření vysokých teplot na bázi slitin platiny s rhodiem. Hlavní využití těchto typů termočlánků je ve sklářském a hutnickém průmyslu.

V omezené míře se platina používá se zejména k výrobě šperků a k pokovování méně ušlechtilých kovů. Je také součástí některých dentálních slitin především ve spojení s moderními keramickými materiály.

Mineralogie[editovat | editovat zdroj]

Plationové nugety

Platina se v přírodě vyskytuje prakticky pouze ve formě ryzího kovu, i když téměř vždy jsou v menší míře přítomny i další platinové kovy jako rhodium, palladium nebo iridium. Její zastoupení v zemské kůře je velmi malé, odhaduje se, že její průměrný výskyt činí 0,005–0,01 ppm (mg/kg). Koncentrace v mořské vodě je natolik nízká, že ji nelze současnými analytickými metodami spolehlivě změřit.

Nejbohatší světová naleziště jsou v jižní Africe, kde se v některých hlubinných dolech v Jihoafrické republice těží až ve čtyřkilometrové hloubce. Existují zde však i naleziště, kde se hornina s jemně rozptýlenými částečkami kovu těží povrchově.

Dalšími lokalitami s výskytem platiny je Sibiř a Ural, kde se vzácně nachází platina i ve formě nugetů o váze i několik desítek gramů. Dalších několik nalezišť se nachází v Severní Americe v Kanadě i USA.

Rudy ve většině využívaných nalezišť vykazují kovnatost 5–20 g/t. Obvyklým způsobem zkoncentrování drahých kovů je flotace po jemném namletí vytěžené horniny.

Platidlo[editovat | editovat zdroj]

Světová cena platiny na světových trzích v korunách za gram Online www.KITCO.cz Aktuální k 20.10.2011

Platina je sice drahým kovem, kujným, vhodným pro ražbu, ale mince z něj ražené se nestaly moc oblíbené pro běžné použití. V současné době se používají platinové mince spíše jako sběratelské, či investiční mince. První platinové mince se razily pravděpodobně v Rusku. Ze sběratelského hlediska jsou staré platinové mince velmi vzácné.

Literatura[editovat | editovat zdroj]

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Související články[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]


Externí odkazy[editovat | editovat zdroj]



Periodická tabulka chemických prvků
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
H (přehled) He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
 
*Lanthanoidy  La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
**Aktinoidy  Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
 
Skupiny prvků: Kovy · Nekovy · Polokovy | Blok s · Blok p · Blok d · Blok f