Hafnium

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Zr

Hf

Rf

LuteciumHafniumTantal

  [Xe] 4f14 5d2 6s2
  Hf
72
 
               
               
                                   
                                   
                                                               
                                                               
↓Periodická tabulka prvků↓
Obecné
Název (lat.), značka, číslo Hafnium (Hafnium), Hf , 72
Registrační číslo CAS 7440-25-7
Umístění v PSP 4 skupina,

6. perioda, blok d

Char. skupina Přechodné kovy
Hmotnostní zlomekzem. kůře ppm
Konc. v mořské vodě mg/l
Počet přírodních izotopů
Vzhled šedý kov
7440-58-6
[[Soubor:|255px|Emisní spektrum]]
Atomové vlastnosti
Rel. at. hmotnost 178,49(2)
Atomový poloměr 159 pm
Kovalentní poloměr 175 pm
van der Waalsův poloměr pm
Elektronová konfigurace [Xe] 4f14 5d2 6s2
Elektronů v hladinách 2, 8, 18, 32, 10, 2
Oxidační číslo II, III, IV
Fyzikální vlastnosti
Skupenství Pevné
Krystalová struktura hexagonální
Hustota 13,31 g/cm³
Kritická hustota {{{kritická hustota}}} g cm−3
Tvrdost 5,5 (Mohsova stupnice)
Magnetické chování Paramagnetické
Měrná magnetická susceptibilita {{{magnetická susceptibilita}}}
Teplota tání 2 232,85 °C (2 506 K)
Teplota varu 4 602,85 °C (4 876 K)
Kritická teplota {{{kritická teplota c}}} °C ({{{kritická teplota k}}} K)
Teplota trojného bodu {{{teplota trojného bodu c}}} °C ({{{teplota trojného bodu k}}} K)
Teplota přechodu do supravodivého stavu {{{teplota supravodivosti}}}
Teplota změny krystalové modifikace {{{teplota změny modifikace}}}
Tlak trojného bodu {{{tlak trojného bodu}}} kPa
Kritický tlak {{{kritický tlak}}} kPa
Molární objem · 10−6 m3/mol
Dynamický viskozitní koeficient {{{dynamický viskozitní koef.}}}
Kinematický viskozitní koeficient {{{kinematický viskozitní koef.}}}
Tlak nasycené páry
Rychlost zvuku m/s
Index lomu {{{index lomu}}}
Relativní permitivita {{{relativní permitivita}}}
Elektrická vodivost S·m−1
Měrný elektrický odpor 331 μΩ
Teplotní součinitel el. odporu {{{součinitel elektrického odporu}}}
Tepelná vodivost W·m−1·K−1
Povrchové napětí {{{povrchové napětí}}}
Termodynamické vlastnosti
Skupenské teplo tání
Specifické teplo tání {{{spec. teplo tání}}}
Skupenské teplo varu
Specifické teplo varu {{{spec. teplo varu}}}
Molární atomizační entalpie {{{molární atomizační entalpie}}}
Entalpie fázové přeměny modifikace {{{entalpie fázové přeměny modifikace}}}
absolutní entropie {{{absolutní entropie}}}
Měrná tepelná kapacita {{{měrná tepelná kapacita}}}
Molární tepelná kapacita {{{molární tepelná kapacita}}}
Spalné teplo na m³
Spalné teplo na kg
Různé
Van der Waalsovy konstanty {{{van der Waalsovy konstanty}}}
Teplotní součinitel délkové roztažnosti {{{součinitel délkové roztažnosti}}}
Redoxní potenciál V
Elektronegativita 1,3 (Paulingova stupnice)
Ionizační energie
Iontový poloměr {{{iontový poloměr}}} pm
Izotopy
izo výskyt t1/2 rozpad en. MeV prod.
5 -
{{{výskyt}}} je stabilní s neutrony
je stabilní s neutrony
je stabilní s neutrony
Bezpečnost


R-věty
S-věty
Není-li uvedeno jinak, jsou použity jednotky SI a STP.

Hafnium, chemická značka Hf, (lat. Hafnium) je šedý až stříbřitě bílý, kovový prvek, chemicky velmi podobný zirkoniu. Hlavní uplatnění nalézá jako složka některých speciálních slitin.

Základní fyzikálně-chemické vlastnosti[editovat | editovat zdroj]

Kousky hafnia

Hafnium je šedý až stříbřitě bílý, středně tvrdý, poměrně vzácný těžký kov. Při teplotách pod 0,35 K je supravodičem I typu.

Vyznačuje se mimořádnou chemickou stálostí – je zcela netečný k působení vody a odolává působení většiny běžných minerálních kyselin i roztoků alkalických hydroxidů. Pro jeho rozpouštění je nejúčinnější kyselina fluorovodíková (HF) nebo její směsi s jinými minerálními kyselinami.

Chemicky je velmi silně podobné zirkoniu, doprovází jej prakticky ve všech minerálech a horninách a proto je příprava velmi čistého hafnia náročný problém.

Ve sloučeninách se vyskytuje především v mocenství Hf+4, ale jsou známy i sloučeniny Hf+3 a Hf+2.

Hafnium bylo objeveno roku 1923 v dánském hlavním městě Kodani, podle jehož latinského jména bylo také pojmenováno. Objeviteli byli chemici Dirk Coster a Georg von Hevesy.

Výskyt a výroba[editovat | editovat zdroj]

Minerál zirkon

Hafnium je v zemské kůře řídkým prvkem, jeho obsah se odhaduje na přibližně 4,5 mg/kg (4,5 ppm). V mořské vodě je jeho koncentrace natolik nízká, že ji nelze přesně určit ani nejcitlivějšími analytickými technikami. Udává se proto, že jeho obsah je nižší než 0,000 008 mg/l. Ve vesmíru připadá jeden atom hafnia na 200 miliard atomů vodíku.

Hafnium se v přírodě vyskytuje pouze ve formě sloučenin. V minerálech vždy doprovází zirkonium v množství 1–5 % a minerály obsahující samostatně hafnium nejsou známy. Z významnějších minerálů zirkonia lze jmenovat baddeleyit, zirkon, zirkelit, a uhligit.

Mezi hlavní oblasti těžby minerálů a hornin s výrazným zastoupením zirkonia patří Austrálie, Brazílie, Indie, Rusko, a USA.

Průmyslová výroba hafnia spočívá především v jeho separaci od zirkonia, protože při Krollově procesu, který je dnes základním postupem pro rozklad a separaci zirkoniových rud, je výsledným produktem směs Zr + Hf.

Jejich vzájemná separace se provádí buď frakční destilací chloridů nebo na ionexových kolonách.

Vzhledem k omezené dostupnosti hrozí v nejbližších letech kritický nedostatek zdrojů prvku pro technologické využití.[1]

Použití a sloučeniny[editovat | editovat zdroj]

Krystalické kovové hafnium

Vzhledem ke svému nízkému výskytu a nákladné výrobě nemá hafnium příliš velké praktické uplatnění. Jeho hlavním zdrojem je proces čištění kovového zirkonia pro účely jaderné energetiky.

Vysoký bod tání a odolnost hafnia jej určují jako jeden z materiálů pro výrobu klasických žárovkových vláken, v nichž je vlákno rozžhaveno průchodem elektrického proudu na takovou teplotu, že je zdrojem viditelného světla (elektromagnetického záření v oblasti vlnových délek 360–900 nm).

Z hafnia se vyrábějí elektrody pro plazmové řezání kovů a sváření.

Společně se zirkoniem, niobem, tantalem a titanem je složkou speciálních slitin s velkou odolností proti korozi a vysokým teplotám.

Při výrobě polovodičů a integrovaných obvodů nalézá uplatnění oxid hafničitý (HfO2).

Literatura[editovat | editovat zdroj]

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9
  1. (anglicky) Energy Department Releases New Critical Materials Strategy, 15. prosinec 2010

Externí odkazy[editovat | editovat zdroj]


Periodická tabulka prvků
s prvky f prvky d prvky p prvky
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
Alkalické kovy Kovy alkalických zemin Lanthanoidy Aktinoidy Přechodné kovy Nepřechodné kovy Polokovy Nekovy Halogeny Vzácné plyny nespecifikováno