Dysprosium

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání



Dy

Bk

TerbiumDysprosiumHolmium

  [Xe] 4f10 6s2
A Dy
66
 
               
               
                                   
                                   
                                                               
                                                               
Obecné
Název (lat.), značka, číslo Dysprosium (Dysprosium), Dy , 66
Registrační číslo CAS 7429-91-6
Umístění v PSP skupina,

6. perioda, blok f

Char. skupina Lanthanoidy
Hmotnostní zlomekzem. kůře {{{hmotnostní zlomek v zemské kůře}}} ppm
Konc. v mořské vodě {{{koncentrace v mořské vodě}}} mg/l
Počet přírodních izotopů {{{počet přírodních izotopů}}}
Vzhled {{{vzhled}}}
Pevné dysprosium
[[Soubor:{{{spektrum}}}|255px|Emisní spektrum]]
Atomové vlastnosti
Rel. at. hmotnost 162,500(1)
Atomový poloměr pm
Kovalentní poloměr {{{kovalentní poloměr}}} pm
van der Waalsův poloměr {{{van der waalsův poloměr}}} pm
Elektronová konfigurace [Xe] 4f10 6s2
Elektronů v hladinách {{{elektronů ve slupkách}}}
Oxidační číslo {{{oxidační čísla}}}
Fyzikální vlastnosti
Skupenství Pevné
Krystalová struktura {{{krystalová struktura}}}
Hustota 8,540 g/cm3;
Hustota při teplotě tání: 8,37 g/cm3
Kritická hustota {{{kritická hustota}}} g cm−3
Tvrdost (Mohsova stupnice)
Magnetické chování {{{magnetické chování}}}
Měrná magnetická susceptibilita {{{magnetická susceptibilita}}}
Teplota tání 1 407 °C (1 680 K)
Teplota varu 2 567 °C (2 840 K)
Kritická teplota {{{kritická teplota c}}} °C ({{{kritická teplota k}}} K)
Teplota trojného bodu {{{teplota trojného bodu c}}} °C ({{{teplota trojného bodu k}}} K)
Teplota přechodu do supravodivého stavu {{{teplota supravodivosti}}}
Teplota změny krystalové modifikace {{{teplota změny modifikace}}}
Tlak trojného bodu {{{tlak trojného bodu}}} kPa
Kritický tlak {{{kritický tlak}}} kPa
Molární objem {{{molární objem}}} · 10−6 m3/mol
Dynamický viskozitní koeficient {{{dynamický viskozitní koef.}}}
Kinematický viskozitní koeficient {{{kinematický viskozitní koef.}}}
Tlak nasycené páry {{{tlak nasycené páry}}}
Rychlost zvuku {{{rychlost zvuku}}} m/s
Index lomu {{{index lomu}}}
Relativní permitivita {{{relativní permitivita}}}
Elektrická vodivost {{{elektrická vodivost}}} S·m−1
Měrný elektrický odpor {{{elektrický odpor}}}
Teplotní součinitel el. odporu {{{součinitel elektrického odporu}}}
Tepelná vodivost {{{tepelná vodivost}}} W·m−1·K−1
Povrchové napětí {{{povrchové napětí}}}
Termodynamické vlastnosti
Skupenské teplo tání
Specifické teplo tání {{{spec. teplo tání}}}
Skupenské teplo varu
Specifické teplo varu {{{spec. teplo varu}}}
Molární atomizační entalpie {{{molární atomizační entalpie}}}
Entalpie fázové přeměny modifikace {{{entalpie fázové přeměny modifikace}}}
absolutní entropie {{{absolutní entropie}}}
Měrná tepelná kapacita {{{měrná tepelná kapacita}}}
Molární tepelná kapacita
Spalné teplo na m³ {{{spalné teplo na m3}}}
Spalné teplo na kg {{{spalné teplo na kg}}}
Různé
Van der Waalsovy konstanty {{{van der Waalsovy konstanty}}}
Teplotní součinitel délkové roztažnosti {{{součinitel délkové roztažnosti}}}
Redoxní potenciál {{{elektrodový potenciál}}} V
Elektronegativita 1,22 (Paulingova stupnice)
Ionizační energie
Iontový poloměr {{{iontový poloměr}}} pm
Bezpečnost


R-věty {{{R-věty}}}
S-věty {{{S-věty}}}
Není-li uvedeno jinak, jsou použity jednotky SI a STP.

Dysprosium, chemická značka Dy, (lat. Dysprosium) je měkký stříbřitě bílý, přechodný kovový prvek, 10. člen skupiny lanthanoidů. Nachází využití při výrobě speciálních slitin pro jadernou energetiku a při výrobě laserů.

Základní fyzikálně-chemické vlastnosti[editovat | editovat zdroj]

Dysprosium je stříbřitě bílý, měkký přechodný kov.

Dysprosium

Chemicky je dysprosium méně reaktivní než předchozí prvky ze skupiny lanthanoidů. Na suchém vzduchu je prakticky stálé, ve vlhkém prostředí se pomalu pokrývá vrstvičkou oxidu. Snadno se rozpouští v běžných minerálních kyselinách za vývoje vodíku.

Ve sloučeninách se vyskytuje pouze v mocenství Dy+3. Soli Dy+3 vykazují vlastnosti podobné sloučeninám hliníku a ostatních lanthanoidů. Všechny tyto prvky tvoří například vysoce stabilní oxidy, které nereagují s vodou a jen velmi obtížně se redukují. Ze solí anorganických kyselin jsou důležité především fluoridy a fosforečnany, jejich nerozpustnost ve vodě se používá k separaci lanthanoidů od jiných kovových iontů. Dysprosité soli mají obvykle žlutou barvu.

Dysprosium objevil roku 1886 francouzský chemik Paul-Emile Lecoq de Boisbaudran jako nečistotu ve zkoumaném oxidu erbitém. Elementární čisté dysprosium bylo vyrobeno teprve kolem roku 1950 užitím techniky ionexové separace.

Výskyt a výroba[editovat | editovat zdroj]

Dysprosium je v zemské kůře obsaženo v koncentraci přibližně 3 – 4,5 mg/kg, o jeho obsahu v mořské vodě údaje chybí. Ve vesmíru připadá jeden atom dysprosia na 100 miliard atomů vodíku.

V přírodě se dysprosium vyskytuje pouze ve formě sloučenin. Neexistují však ani minerály, v nichž by se některé lanthanoidy (prvky vzácných zemin) vyskytovaly samostatně, ale vždy se jedná o minerály směsné, které obsahují prakticky všechny prvky této skupiny. Mezi nejznámější patří monazity (Ce, La, Th, Nd, Y)PO4 a xenotim, chemicky fosforečnany lanthanoidů , dále bastnäsity (Ce, La, Y)CO3F– směsné flourouhličitany prvků vzácných zemin a např. minerál euxenit (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6.

Velká ložiska těchto rud se nalézají ve Skandinávii, USA, Číně a Vietnamu. Významným zdrojem jsou i fosfátové suroviny – apatity z poloostrova Kola v Rusku.

Vzhledem k omezené dostupnosti hrozí v nejbližších letech kritický nedostatek zdrojů prvku pro technologické využití.[1]

Při průmyslové výrobě prvků vzácných se jejich rudy nejprve louží směsí kyseliny sírové a chlorovodíkové a ze vzniklého roztoku solí se přídavkem hydroxidu sodného vysráží hydroxidy.

Separace jednotlivých prvků se provádí řadou různých postupů – kapalinovou extrakcí, za použití ionexových kolon nebo selektivním srážením nerozpustných komplexních solí.

Příprava čistého kovu se obvykle provádí redukcí oxidu dysprosia Dy2O3 elementárním vápníkem.

Dy2O3 + 3 Ca → 2 Dy + 3 CaO

Použití a sloučeniny[editovat | editovat zdroj]

  • Podobně jako gadolinium, vykazuje dysprosium vysoký účinný průřez pro záchyt tepelných neutronů a jeho slitiny s niklem jsou často používaným materiálem pro výrobu moderátorových tyčí v jaderných reaktorech. Zasunutím těchto tyčí do nitra rektoru dojde k poklesu neutronového toku a tím zpomalení štěpné reakce.
  • Světelné výbojky plněné halogenidy dysprosia jsou zdrojem velmi intenzivního světelného záření a nacházejí proto uplatnění především ve filmařském průmyslu a dalších speciálních aplikacích s požadavky na mohutný světelný tok.
  • Společně s vanadem se dysprosium uplatňuje při výrobě laserů .

Literatura[editovat | editovat zdroj]

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  1. (anglicky) Energy Department Releases New Critical Materials Strategy, 15. prosinec 2010

Externí odkazy[editovat | editovat zdroj]


Periodická tabulka prvků
s prvky f prvky d prvky p prvky
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
Alkalické kovy Kovy alkalických zemin Lanthanoidy Aktinoidy Přechodné kovy Nepřechodné kovy Polokovy Nekovy Halogeny Inertní plyny nespecifikováno