Ytterbium

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání



Yb

No

ThuliumYtterbiumLutecium

  [Xe] 4f14 6s2
A Yb
70
 
               
               
                                   
                                   
                                                               
                                                               
Obecné
Název (lat.), značka, číslo Ytterbium (Ytterbium), Yb , 70
Registrační číslo CAS 7440-64-4
Umístění v PSP skupina,

6. perioda, blok f

Char. skupina Lanthanoidy
Hmotnostní zlomekzem. kůře {{{hmotnostní zlomek v zemské kůře}}} ppm
Konc. v mořské vodě {{{koncentrace v mořské vodě}}} mg/l
Počet přírodních izotopů {{{počet přírodních izotopů}}}
Vzhled {{{vzhled}}}
Pevné ytterbium
[[Soubor:{{{spektrum}}}|255px|Emisní spektrum]]
Atomové vlastnosti
Rel. at. hmotnost 173,04(3)
Atomový poloměr (1,75 Å) 175 pm pm
Kovalentní poloměr {{{kovalentní poloměr}}} pm
van der Waalsův poloměr {{{van der waalsův poloměr}}} pm
Elektronová konfigurace [Xe] 4f14 6s2
Elektronů v hladinách {{{elektronů ve slupkách}}}
Oxidační číslo {{{oxidační čísla}}}
Fyzikální vlastnosti
Skupenství Pevné
Krystalová struktura {{{krystalová struktura}}}
Hustota 6,90 g/cm3;
Hustota při teplotě tání: 6,21 g/cm3
Kritická hustota {{{kritická hustota}}} g cm−3
Tvrdost (Mohsova stupnice)
Magnetické chování {{{magnetické chování}}}
Měrná magnetická susceptibilita {{{magnetická susceptibilita}}}
Teplota tání 824 °C (1097 K)
Teplota varu 1196 °C (1469 K)
Kritická teplota {{{kritická teplota c}}} °C ({{{kritická teplota k}}} K)
Teplota trojného bodu {{{teplota trojného bodu c}}} °C ({{{teplota trojného bodu k}}} K)
Teplota přechodu do supravodivého stavu {{{teplota supravodivosti}}}
Teplota změny krystalové modifikace {{{teplota změny modifikace}}}
Tlak trojného bodu {{{tlak trojného bodu}}} kPa
Kritický tlak {{{kritický tlak}}} kPa
Molární objem {{{molární objem}}} · 10−6 m3/mol
Dynamický viskozitní koeficient {{{dynamický viskozitní koef.}}}
Kinematický viskozitní koeficient {{{kinematický viskozitní koef.}}}
Tlak nasycené páry {{{tlak nasycené páry}}}
Rychlost zvuku {{{rychlost zvuku}}} m/s
Index lomu {{{index lomu}}}
Relativní permitivita {{{relativní permitivita}}}
Elektrická vodivost {{{elektrická vodivost}}} S·m−1
Měrný elektrický odpor {{{elektrický odpor}}}
Teplotní součinitel el. odporu {{{součinitel elektrického odporu}}}
Tepelná vodivost {{{tepelná vodivost}}} W·m−1·K−1
Povrchové napětí {{{povrchové napětí}}}
Termodynamické vlastnosti
Skupenské teplo tání 7,66 kJ/mol
Specifické teplo tání {{{spec. teplo tání}}}
Skupenské teplo varu 159 kJ/mol
Specifické teplo varu {{{spec. teplo varu}}}
Molární atomizační entalpie {{{molární atomizační entalpie}}}
Entalpie fázové přeměny modifikace {{{entalpie fázové přeměny modifikace}}}
absolutní entropie {{{absolutní entropie}}}
Měrná tepelná kapacita {{{měrná tepelná kapacita}}}
Molární tepelná kapacita 26,74 J.mol-1.K-1
Spalné teplo na m³ {{{spalné teplo na m3}}}
Spalné teplo na kg {{{spalné teplo na kg}}}
Různé
Van der Waalsovy konstanty {{{van der Waalsovy konstanty}}}
Teplotní součinitel délkové roztažnosti {{{součinitel délkové roztažnosti}}}
Redoxní potenciál {{{elektrodový potenciál}}} V
Elektronegativita 1,1 (Paulingova stupnice)
Ionizační energie Yb→Yb+: 603,4 kJ/mol;
Yb+→Yb2+: 1174,8 kJ/mol;
Yb2+→Yb3+: 2417 kJ/mol
Iontový poloměr {{{iontový poloměr}}} pm
Bezpečnost


R-věty {{{R-věty}}}
S-věty {{{S-věty}}}
Není-li uvedeno jinak, jsou použity jednotky SI a STP.

Ytterbium, chemická značka Yb, (lat. Ytterbium) je měkký stříbřitě bílý, přechodný kovový prvek, 14. člen skupiny lanthanoidů.

Základní fyzikálně-chemické vlastnosti[editovat | editovat zdroj]

Ytterbium je stříbřitě bílý, měkký přechodný kov.

Chemicky je ytterbium poměrně stálé. Na suchém vzduchu se prakticky nemění, ve vlhkém prostředí se pomalu pokrývá vrstvičkou oxidu. Snadno se rozpouští v běžných minerálních kyselinách za vývoje vodíku.

Ve sloučeninách se vyskytuje v mocenství YbIII a YbII, které je vzhledem k elektronové konfiguraci iontu stabilnější než u jiných lanthanoidů. Soli YbIII vykazují vlastnosti podobné sloučeninám hliníku a ostatních lanthanoidů. Všechny tyto prvky tvoří například vysoce stabilní oxidy, které nereagují s vodou a jen velmi obtížně se redukují. Ze solí anorganických kyselin jsou důležité především fluoridy a fosforečnany, jejich nerozpustnost ve vodě se používá k separaci lanthanoidů od jiných kovových iontů. Ytterbité soli jsou bezbarvé.

Ytterbium objevil roku 1878 švýcarský chemik Jean Charles Galissard de Marignac jako nečistotu v oxidu erbitém a pojmenoval jej po švédské vesnici Ytterby (podle "yttre by" znamenající "vnější vesnice"), poblíž něho bylo nalezeno značné množství minerálů s významným obsahem prvků řady lanthanoidů (terbium, yttrium a erbium). Skutečně čisté elementární ytterbium bylo získáno až v roce 1953.

Výskyt, výroba a využití[editovat | editovat zdroj]

Ytterbium se vyskytuje zemské kůře v koncentraci 2,6–3 mg/kg.O jeho obsahu v mořské vodě údaje chybí. Ve vesmíru připadá jeden atom ytterbia na 200 miliard atomů vodíku.

V přírodě se ytterbium vyskytuje pouze ve formě sloučenin. Neexistují však ani minerály, v nichž by se některé lanthanoidy (prvky vzácných zemin) vyskytovaly samostatně, ale vždy se jedná o minerály směsné, které obsahují prakticky všechny prvky této skupiny. Mezi nejznámější patří monazity (Ce, La, Th, Nd, Y)PO4 a xenotim, chemicky fosforečnany lanthanoidů, dále bastnäsity (Ce, La, Y)CO3F – směsné flourouhličitany prvků vzácných zemin a např. minerál euxenit (Y,Ca,Ce,U (poloostrov Kola v Rusku).

Při průmyslové výrobě prvků vzácných se jejich rudy nejprve louží směsí kyseliny sírové a chlorovodíkové a ze vzniklého roztoku solí se přídavkem hydroxidu sodného vysráží hydroxidy.

Separace jednotlivých prvků se provádí řadou různých postupů – kapalinovou extrakcí, za použití ionexových kolon nebo selektivním srážením nerozpustných komplexních solí.

Příprava čistého kovu se obvykle provádí elektrochemicky z taveniny směsi chloridů ytterbia, vápníku a sodíku. Elementární ytterbium se vylučuje na grafitové katodě, na kladné elektrodě (anodě) dochází k uvolňování elementárního plynného chloru.

Kvůli svému velmi řídkému výskytu a vysoké výrobní ceně čistého kovu nemají v současné době kovové ytterbium ani jeho sloučeniny žádné významné komerční využití. Potenciálním oborem využití jsou výroba laserů a metalurgie při zušlechťování speciálních druhů ocelí.

Literatura[editovat | editovat zdroj]

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie II. 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy[editovat | editovat zdroj]