Holmium

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání



Ho

Es

DysprosiumHolmiumErbium

  [Xe] 4f11 6s2
A Ho
67
 
               
               
                                   
                                   
                                                               
                                                               
Obecné
Název (lat.), značka, číslo Holmium (Holmium), Ho , 67
Registrační číslo CAS 7440-60-0
Umístění v PSP skupina,

6. perioda, blok f

Char. skupina Lanthanoidy
Hmotnostní zlomekzem. kůře {{{hmotnostní zlomek v zemské kůře}}} ppm
Konc. v mořské vodě {{{koncentrace v mořské vodě}}} mg/l
Počet přírodních izotopů {{{počet přírodních izotopů}}}
Vzhled {{{vzhled}}}
Pevné holmium
[[Soubor:{{{spektrum}}}|255px|Emisní spektrum]]
Atomové vlastnosti
Rel. at. hmotnost 164,93032(2)
Atomový poloměr 1,75 Å (175 pm) pm
Kovalentní poloměr {{{kovalentní poloměr}}} pm
van der Waalsův poloměr {{{van der waalsův poloměr}}} pm
Elektronová konfigurace [Xe] 4f11 6s2
Elektronů v hladinách {{{elektronů ve slupkách}}}
Oxidační číslo {{{oxidační čísla}}}
Fyzikální vlastnosti
Skupenství Pevné
Krystalová struktura {{{krystalová struktura}}}
Hustota 8,79 g/cm3;
Hustota při teplotě tání: 8,34 g/cm3
Kritická hustota {{{kritická hustota}}} g cm−3
Tvrdost (Mohsova stupnice)
Magnetické chování {{{magnetické chování}}}
Měrná magnetická susceptibilita {{{magnetická susceptibilita}}}
Teplota tání 1461 °C (1734 K)
Teplota varu 2720 °C (2993 K)
Kritická teplota {{{kritická teplota c}}} °C ({{{kritická teplota k}}} K)
Teplota trojného bodu {{{teplota trojného bodu c}}} °C ({{{teplota trojného bodu k}}} K)
Teplota přechodu do supravodivého stavu {{{teplota supravodivosti}}}
Teplota změny krystalové modifikace {{{teplota změny modifikace}}}
Tlak trojného bodu {{{tlak trojného bodu}}} kPa
Kritický tlak {{{kritický tlak}}} kPa
Molární objem {{{molární objem}}} · 10−6 m3/mol
Dynamický viskozitní koeficient {{{dynamický viskozitní koef.}}}
Kinematický viskozitní koeficient {{{kinematický viskozitní koef.}}}
Tlak nasycené páry {{{tlak nasycené páry}}}
Rychlost zvuku {{{rychlost zvuku}}} m/s
Index lomu {{{index lomu}}}
Relativní permitivita {{{relativní permitivita}}}
Elektrická vodivost {{{elektrická vodivost}}} S·m−1
Měrný elektrický odpor {{{elektrický odpor}}}
Teplotní součinitel el. odporu {{{součinitel elektrického odporu}}}
Tepelná vodivost {{{tepelná vodivost}}} W·m−1·K−1
Povrchové napětí {{{povrchové napětí}}}
Termodynamické vlastnosti
Skupenské teplo tání 17,0 kJ/mol
Specifické teplo tání {{{spec. teplo tání}}}
Skupenské teplo varu 265 kJ/mol
Specifické teplo varu {{{spec. teplo varu}}}
Molární atomizační entalpie {{{molární atomizační entalpie}}}
Entalpie fázové přeměny modifikace {{{entalpie fázové přeměny modifikace}}}
absolutní entropie {{{absolutní entropie}}}
Měrná tepelná kapacita {{{měrná tepelná kapacita}}}
Molární tepelná kapacita 27,15 J.mol-1.K-1
Spalné teplo na m³ {{{spalné teplo na m3}}}
Spalné teplo na kg {{{spalné teplo na kg}}}
Různé
Van der Waalsovy konstanty {{{van der Waalsovy konstanty}}}
Teplotní součinitel délkové roztažnosti {{{součinitel délkové roztažnosti}}}
Redoxní potenciál {{{elektrodový potenciál}}} V
Elektronegativita 1,23 (Paulingova stupnice)
Ionizační energie Ho→Ho+: 581,0 kJ/mol;
Ho+→Ho2+: 1140 kJ/mol;
Ho2+→Ho3+: 2204 kJ/mol
Iontový poloměr {{{iontový poloměr}}} pm
Bezpečnost


R-věty {{{R-věty}}}
S-věty {{{S-věty}}}
Není-li uvedeno jinak, jsou použity jednotky SI a STP.

Holmium, chemická značka Ho, (lat. Holmium) je měkký stříbřitě bílý, přechodný kovový prvek, 11. člen skupiny lanthanoidů. Nachází využití při výrobě silných permanentních magnetů, speciálních slitin pro jadernou energetiku a při výrobě laserů.

Základní fyzikálně-chemické vlastnosti[editovat | editovat zdroj]

Holmium je stříbřitě bílý, měkký přechodný kov.

Chemicky je holmium méně reaktivní než předchozí prvky ze skupiny lanthanoidů. Na suchém vzduchu je prakticky stálé, ve vlhkém prostředí se pomalu pokrývá vrstvičkou oxidu. Snadno se rozpouští v běžných minerálních kyselinách za vývoje vodíku.

Ve sloučeninách se vyskytuje pouze v mocenství Ho+3. Soli Ho+3 vykazují vlastnosti podobné sloučeninám hliníku a ostatních lanthanoidů. Všechny tyto prvky tvoří například vysoce stabilní oxidy, které nereagují s vodou a jen velmi obtížně se redukují. Ze solí anorganických kyselin jsou důležité především fluoridy a fosforečnany, jejich nerozpustnost ve vodě se používá k separaci lanthanoidů od jiných kovových iontů. Holmité soli mají obvykle žlutou nebo narůžovělou barvu.

Holmium objevili roku 1878 současně Marc Delafontaine, Jacques Louis Soret a Per Teodor Cleve jako nečistotu ve zkoumaném oxidu erbitém. Jméno získal prvek po starém latinském názvu města Stockholmu.

Výskyt a výroba[editovat | editovat zdroj]

Holmium je v zemské kůře obsaženo v koncentraci přibližně 1,2 mg/kg, o jeho obsahu v mořské vodě údaje chybí. Ve vesmíru připadá jeden atom holmia na 500 miliard atomů vodíku.

V přírodě se holmium vyskytuje pouze ve formě sloučenin. Neexistují však ani minerály, v nichž by se některé lanthanoidy (prvky vzácných zemin) vyskytovaly samostatně, ale vždy se jedná o minerály směsné, které obsahují prakticky všechny prvky této skupiny. Mezi nejznámější patří monazity (Ce, La, Th, Nd, Y)PO4 a xenotim, chemicky fosforečnany lanthanoidů, dále bastnäsity (Ce, La, Y)CO3F– směsné flourouhličitany prvků vzácných zemin a např. minerál euxenit (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6.

Velká ložiska těchto rud se nalézají ve Skandinávii, USA, Číně a Vietnamu. Významným zdrojem jsou i fosfátové suroviny – apatity z poloostrova Kola v Rusku.

Při průmyslové výrobě prvků vzácných zemin se jejich rudy nejprve louží směsí kyseliny sírové a chlorovodíkové a ze vzniklého roztoku solí se přídavkem hydroxidu sodného vysráží hydroxidy.

Separace jednotlivých prvků se provádí řadou různých postupů – kapalinovou extrakcí, za použití ionexových kolon nebo selektivním srážením nerozpustných komplexních solí.

Příprava čistého kovu se obvykle provádí redukcí oxidu holmia Ho2O3 elementárním vápníkem.

Ho2O3 + 3 Ca → 2 Ho + 3 CaO

Použití a sloučeniny[editovat | editovat zdroj]

Podobně jako gadolinium, vykazuje holmium vysoký účinný průřez pro záchyt tepelných neutronů a jeho slitiny jsou materiálem pro výrobu moderátorových tyčí v jaderných reaktorech. Zasunutím těchto tyčí do nitra reaktoru dojde k poklesu neutronového toku a tím zpomalení štěpné reakce.

Holmium je součástí velmi silných umělých magnetů a zařízení pro fokusaci magnetických polí.

Holmium se uplatňuje při výrobě laserů na bázi granátů yttria a železa nebo fluoridů yttria a lanthanu. Lasery uvedených typů slouží pro vyzařování elektromagnetického záření v infračervené oblasti spektra.

Sloučeniny holmia se ve sklářském průmyslu užívají pro barvení skloviny do žluta.

Literatura[editovat | editovat zdroj]

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • Greenwood N.N., Earnshaw A.: Chemie prvků II. 1. vyd. 1993. ISBN 80-85427-38-9

Externí odkazy[editovat | editovat zdroj]