Einsteinovy rovnice gravitačního pole

Z Wikipedie, otevřené encyklopedie
Skočit na navigaci Skočit na vyhledávání
Obecná teorie relativity

'"`UNIQ--postMath-00000001-QINU`"'
  • Základní pojmy
  • Jevy
  • Rovnice, formalismus
  • Řešení
  • Vědci

Einsteinovy rovnice gravitačního pole (ERGP, také známy jako Einsteinovy rovnice) zahrnují soubor 10 rovnic v obecné teorii relativity Alberta Einsteina, které popisují základní interakci gravitace jako výsledek zakřivení časoprostoru hmotou a energií.[1] Poprvé je Einstein publikoval v roce 1915 jako tenzorové rovnice,[2] ERGP týkající se místa časoprostorového zakřivení (vyjádřeno Einsteinovým tenzorem) s lokální energií a hybností v rámci tohoto časoprostoru (vyjádřeno tenzorem energie a hybnosti).[3]

Podobně jako způsob, kterým jsou elektromagnetická pole určována náboji a proudy pomocí Maxwellových rovnic, jsou ERGP používány k určení geometrie časoprostoru vyplývající z přítomnosti hmotnosti-energie a lineární hybnosti, tj. určují metrický tenzor prostoročasu pro dané uspořádání energie a hybnosti v časoprostoru. Vztah mezi metrickým tenzorem a Einsteinovým tenzorem umožňuje, aby ERGP byly zapsány jako soubor nelineárních parciálních diferenciálních rovnic, když jsou používány tímto způsobem. Řešení ERGP jsou součásti metrického tenzoru. Setrvačnost trajektorií částic a záření (geodetika) ve výsledné geometrie se pak vypočte pomocí geodetické rovnice.

Stejně jako při zachování místní energie- hybnosti ERGP zachovává Newtonův gravitační zákon, pokud je gravitační pole slabé a rychlosti jsou mnohem menší než rychlost světla.[4]

Přesná řešení pro ERGP lze nalézt pouze za zjednodušujících předpokladů, jako je symetrie. Nejčastěji se studují speciální třídy přesných řešení, protože modelují mnoho gravitačních jevů, jako jsou rotující černé díry a rozpínající se vesmír. Další zjednodušení je dosaženo aproximací skutečného časoprostoru jako plochého časoprostoru s malou odchylkou, která vede k linearizovaným ERGP. Tyto rovnice se používají ke studiu jevů, jako jsou gravitační vlny.

Matematická forma[editovat | editovat zdroj]

Rovnice vychází z toho, že fyzikálnímu poli lze přiřadit symetrický tenzor energie a hybnosti . Dále se v teorii relativity předpokládá, že gravitační pole v daném bodě je možné popsat deseti funkcemi , (viz metrický tenzor).

Einsteinovy rovnice je možné zapsat ve tvaru

,

kde je tenzor energie a hybnosti, je Einsteinův tenzor a symbol je označením pro všechna ostatní fyzikální pole čistě negeometrické povahy (včetně jejich derivací), jako je např. hmotný prach, tekutina nebo elektromagnetické pole. je Einsteinova gravitační konstanta

.

V tomto vzorci je Newtonova gravitační konstanta a je rychlost světla.

O Einsteinovu tenzoru lze předpokládat, že závisí pouze na metrickém tenzoru a jeho parciálních derivacích podle nejvýše do druhého řádu. Obvykle se také požaduje, aby záviselo na druhých derivacích metrického tenzoru lineárně, což lze zapsat jako

.

Zákon zachování energie a hybnosti omezuje pravou stranu Einsteinových rovnic podmínkou . Divergence levé strany Einsteinových rovnic tedy musí být identicky nulová, tzn. .

Lze ukázat, že pokud má záviset pouze na metrickém tenzoru a jeho derivacích, pak je tvar určen až na konstanty jako

kde je Ricciho tenzor a je skalární křivost.

Srovnáním tohoto vztahu se zúženými formami Riemannova tenzoru lze dojit k závěru, že můžeme položit a . Konstanta zůstává neurčena. Zavedeme-li novou konstantu , můžeme rovnici popisující gravitační zákon vyjádřit jako

Konstanta se označuje jako kosmologická konstanta. Konstanta hraje úlohu pouze v kosmologických měřítkách. Pokud řešíme problémy, které nejsou kosmologického charakteru, klademe , tzn.

Zúžením této dostaneme skalární rovnici

S pomocí této rovnice lze předchozí rovnici upravit na

V prázdném prostoru, tedy v dokonalém vakuu, platí

V takovém případě platí Odtud plyne, že v prázdném prostoru se rovnice gravitačního pole redukují na tvar

Einsteinovy rovnice gravitačního pole, představují systém deseti nelineárních parciálních diferenciálních rovnic. Tyto rovnice tvoří základ obecné teorie relativity.

Vzhledem k tomu, že tyto rovnice jsou nelineární, neplatí v obecné teorii relativity princip superpozice.

Odkazy[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

V tomto článku byl použit překlad textu z článku Einstein field equations na anglické Wikipedii.

  1. EINSTEIN, Albert. The Foundation of the General Theory of Relativity. Annalen der Physik. 1916, s. 769. Dostupné v archivu pořízeném dne 2012-02-06. DOI:10.1002/andp.19163540702. Bibcode:1916AnP...354..769E. (anglicky) 
  2. EINSTEIN, Albert. Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin. November 25, 1915, s. 844–847. Dostupné online [cit. 2017-08-21]. (anglicky) 
  3. Misner, Thorne a Wheeler 1973, s. 916 [ch. 34].
  4. CARROLL, Sean. Spacetime and Geometry – An Introduction to General Relativity. [s.l.]: [s.n.], 2004. ISBN 0-8053-8732-3. S. 151–159. (anglicky) 

Literatura[editovat | editovat zdroj]

Viz zdroje obecné teorie relativity.

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]