David Hilbert

Z Wikipedie, otevřené encyklopedie
Skočit na navigaci Skočit na vyhledávání
David Hilbert
David Hilbert (1912)
David Hilbert (1912)
Narození 23. ledna 1862
Královec
Úmrtí 14. února 1943 (ve věku 81 let)
Göttingen
Místo pohřbení Stadtfriedhof Göttingen (51°31′57″ s. š., 9°54′35″ v. d.)
Bydliště Německo
Národnost Němci
Alma mater Královecká univerzita
Zaměstnavatel Univerzita v Göttingenu
Ocenění Lobačevského cena (1903)
Ponceletova cena (1903)
Cotheniova medaile (1906)
Maxmiliánův řád pro vědu a umění (1907)
Bolyai Prize (1910)
… více na Wikidatech
Děti Franz Hilbert
Logo Wikimedia Commons multimediální obsah na Commons
Některá data mohou pocházet z datové položky.

David Hilbert (23. ledna 1862 Wehlau (dnes Znamensk), Východní Prusko14. února 1943 Göttingen, Německo) byl jeden z největších matematiků 20. století. Někdy je označován za největšího geometra po Euklidovi.[1]

Životopis[editovat | editovat zdroj]

Narodil se v rodině soudce.[2] Zájem o matematiku v něm již v dětství probudila matka, milovnice filozofie a matematiky.[3] Ta ho vyučovala sama až do osmi let, teprve poté nastoupil na základní školu.[1] Vystudoval gymnázium a poté Univerzitu v Královci (Königsberg, dnes Kaliningrad). Již od gymnaziálních let byl blízkým přítelem Hermanna Minkowského, s nímž také na univerzitě studoval. Hilbert a Minkowski se v pozdějších letech ve svých pracích vzájemně ovlivňovali. Studoval pod vedením Ferdinanda von Lindemanna a v roce 1885 získal doktorát za práci Über invariante Eigenschaften specieller binärer Formen, insbesondere der Kugelfunctionen. Lindemann a také další z učitelů Adolf Hurwitz (s nímž se Hilbert velmi spřátelil) ho nasměrovali k teorii invariantů, teorii čísel a teorii funkcí. Po zisku doktorátu se, dle Hurwitzovy rady, vydal na studijní pobyt do Lipska, kde ho vedl Felix Klein, později zamířil na radu Kleinovu do Paříže, kde se setkal s Henri Poincarém a Charlesem Hermitem. V roce 1892 se Hilbert oženil se vzdálenou příbuznou Käthe Jeroschovou a za rok se jim narodilo jejich jediné dítě, syn Franz.

V červnu roku 1886 se stal soukromým docentem v Königsbergu, v roce 1892 se stal mimořádným profesorem, v roce 1893 pak řádným profesorem po Lindemanovi. V roce 1895 odešel na post vedoucího katedry na univerzitě v Göttingenu, kde aktivně působil až do roku 1930. Po odchodu z univerzity získal čestné občanství města Göttingen.

Proslulým se stal jeho vztah ke studentům, s nimiž se přátelil, hostil je u sebe doma, hrál s nimi kulečník v kavárně a chodíval s nimi na dlouhé procházky po lese, během nichž diskutovali nejen o matematice, ale často také o politice či ekonomii. Mnoho z těchto žáků ho také navštívilo na zahradě jeho domu a poznalo tak jeho tvůrčí metodu, která spočívala v tom, že zahradničil a od této činnosti odbíhal k tabuli, kde si zapisoval, co ho při práci napadlo.

V roce 1925 těžce onemocněl. Šlo o perniciózní anémii, která je způsobena nedostatkem vitamínu B12, což však tehdejší věda nechápala a neuměla tuto nemoc léčit. Jejím dopadem bylo trvalé vyčerpání, které mu znemožňovalo věnovat se dále vědě plně. Eugene Paul Wigner to komentoval slovy: "Po roce 1925 byl možná ještě trochu vědcem, ale rozhodně už ne Hilbertem".[4]

Z veřejného života se definitivně stáhl po uchopení moci nacisty, kteří zbavili postů řadu jeho židovských spolupracovníků. V roce 1934 se Hilbert zúčastnil banketu, kde seděl vedle nového nacistického ministra školství Bernharda Rusta. Rust se zeptal, zda „matematický institut opravdu tolik utrpěl odchodem Židů“. Hilbert odpověděl: „Utrpěl? Už neexistuje!“.[5]

Na svůj náhrobní kámen si nechal vytesat Wir müssen wissen, wir werden wissen (Musíme vědět, budeme vědět).

Celkem měl 69 doktorandů, mnoho z nich se později stalo slavnými matematiky: Otto Blumenthal (studium ukončil v roce 1898), Felix Bernstein (1901), Hermann Weyl (1908), Richard Courant (1910), Erich Hecke (1910), Hugo Steinhaus (1911), Wilhelm Ackermann (1925).[6]

Dílo[editovat | editovat zdroj]

V práci Zahlbericht z roku 1897 originálním způsobem upravil matematiku invariantů, tedy geometrických entit, které se nezmění během rotace, dilatace, odrazu apod. Hilbert formuloval teorém o invariantech, podle nějž je invariantů konečný počet.[7]

Významné dílo vydal roku 1899, a to Grundlagen der Geometrie (Základy geometrie). Věnoval se zde riemannovské neeuklidovské geometrii vícerozměrných zakřivených prostorů a souběžně vybudoval úplný systém axiomů (bylo jich 21) klasické geometrie euklidovské. Riemannovské úvahy byly v té době poměrně abstraktní, avšak to se rychle změnilo, když se Hilbert seznámil s Einsteinovou speciální teorií relativity a zejména rolí gravitace v ní, kterou dle Einsteina lze chápat jako zakřivení prostoru. Když se Hilbert doslechl, že Einstein není brilantním matematikem a nevyzná se v riemannovském aparátu ("Každý kluk na ulici Göttingenu ví o čtyřrozměrné geometrii víc než Einstein", prohlásil prý), rozhodl se, že se do relativity pustí sám - z matematické strany. Přitom se sám nechal zasvětit do fyziky, a to Ottou Sternem. Relativistické matematické rovnice nakonec skutečně odvodil rychleji než Einstein, proto se dnes nazývají Hilbertovy–Einsteinovy rovnice.[2]

V roce 1900 na 2. mezinárodním matematickém kongresu v Paříži přednesl slavný projev „Problémy matematiky“, kde popsal 23 (respektive 24) základních problémů moderní matematiky (viz Hilbertovy problémy). Byla mezi nimi hypotéza kontinua, Goldbachova domněnka, Riemannova hypotéza, rozšíření Dirichletova principu a mnoho dalších problémů, z nichž řada byla od té doby vyřešena. Otevřeny zůstávají v podstatě již jen čtyři problémy, krom zmíněných a spjatých prvočíselných hypotéz Riemannovy a Goldbachovy, je to Hilbertova výzva "axiomatizujte fyziku", zobecnění Kroneckerovy věty pro obecné algebraické těleso a topologie reálných algebraických křivek a povrchů.[8]

Dalším jeho epochálním dílem je definování tzv. Hilbertových prostorů, tedy prostorů s nekonečným počtem rozměrů. I tento koncept jevil se být velice abstraktním, ale i on brzy sehrál klíčovou úlohu v rozvoji fyziky, tentokráte zejména v kvantové mechanice.

Jeho práce z roku 1909 o integrálních rovnicích položila základy funkční analýzy 20. století. Přispěl jí rovněž k fyzikální teorii kinetických plynů a teorii záření.

Celý život usiloval o to vybudovat pevný a nezpochybnitelný axiomatický základ moderní matematiky, s nímž bude možné odvodit každé matematické tvrzení tak, že bude zcela nepochybné, bezrozporné a jeho pravdivost bude zaručena. Vývoj, který reprezentoval například Kurt Gödel, však Hilbertovy snahy o prokázání plné konzistence matematiky značně podkopal.

Odkazy[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

  1. a b David Hilbert - Biography. Maths History [online]. [cit. 2020-11-19]. Dostupné online. (anglicky) 
  2. a b KRÁLOVÁ, Magda. David Hilbert | Eduportál Techmania. edu.techmania.cz [online]. [cit. 2020-11-19]. Dostupné online. 
  3. David Hilbert. www.glouny.cz [online]. [cit. 2020-11-19]. Dostupné online. 
  4. WIGNER, Eugene Paul; SZANTON, Andrew. The Recollections of Eugene P. Wigner. [s.l.]: Springer US 335 s. Dostupné online. ISBN 978-0-306-44326-8. (anglicky) 
  5. MENZLER-TROTT, Eckart; PLATO, Jan Von. Gentzens Problem: Mathematische Logik Im Nationalsozialistischen Deutschland. [s.l.]: Birkhäuser 438 s. Dostupné online. ISBN 978-3-7643-6574-5. (německy) Google-Books-ID: GjKxDcKJQVMC. 
  6. The Mathematics Genealogy Project - David Hilbert [online]. [cit. 2007-07-07]. Dostupné online. 
  7. David Hilbert | Facts, Contributions, & Biography. Encyclopedia Britannica [online]. [cit. 2020-11-19]. Dostupné online. (anglicky) 
  8. David Hilbert's 24 Problems. Maths History [online]. [cit. 2020-11-19]. Dostupné online. (anglicky) 

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]