Zemní plyn

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Focul viu (v překladu živý oheň) – přírodní vývěr zemního plynu v rumunských Karpatech nedaleko obce Lopătari v župě Buzău
Plamen zemního plynu v domácnosti

Zemní plyn je přírodní hořlavý plyn využívaný jako významné plynné fosilní palivo. Jeho hlavní složkou je metan. Zemní plyn se těží z porézních sedimentárních hornin uzavřených ve strukturních pastech podobně jako ropa. Nachází se buď samostatně, společně s ropou nebo černým uhlím. Používá se také jako zdroj vodíku při výrobě dusíkatých hnojiv.

Díky tomu, že obsahuje především metan, má v porovnání s ostatními fosilními palivy při spalování nejmenší podíl CO2 na jednotku uvolněné energie. Je proto považován za ekologické palivo. Ve vozidlech se využívá ve stlačené (CNG) nebo zkapalněné podobě (LNG).

Zemní plyn je bez zápachu, proto se odorizuje, tj. přidávají se do něj páchnoucí plyny (např. ethylmerkaptan) tak, aby bylo možno čichem zjistit koncentraci ve vzduchu větší než 1 procento.

Zemní plyn je využíván jako zdroj energie a také jako surovina pro chemický a palivový průmysl.

Fyzikální charakteristiky[editovat | editovat zdroj]

Tyto charakteristiky jsou jen přibližné, protože se podle složení na různých nalezištích liší.

Složení[editovat | editovat zdroj]

Zemní plyn je směsí plynných alkánů methanu (CH4), ethanu (C2H6), propanu (C3H8) a butanu (C4H10).

Metan
Etan
Propan
Butan

Typické složení zemního plynu[1] :

Methan CH4 70-90%
Ethan, Propan, Butan C2H6, C3H8, C4H10 0-20%
Oxid uhličitý CO2 0-8%
Kyslík O2 0-0,2%
Dusík N2 0-5%
Sirovodík H2S 0-5%
Vzácné plyny Ar, He, Ne, Xe Stopy

Složení zemního plynu se liší podle toho ze kterého ložiska se těží. Následující údaje o složení byly převzaty z[2] a[3]. Hodnoty jsou v molárních procentech.

Země původu Methan  Ethan  Propan  Butan   Dusík  Oxid uhličitý
Alžírsko 86,98 9,35 2,33 0,63 0,71 0,87
USA (Aljaška) 99,72 0,06 0,0005 0,0005 0,20 < 0,019
Nizozemí 82,12 2,81 0,38 0,13 13,43 0,99

Vznik[editovat | editovat zdroj]

Zemní plyn vzniká v přírodě třemi způsoby: biogenicky bakteriálním rozkladem organické hmoty, termogenicky společně s ropou nebo anorganickou cestou během tuhnutí magmatu. Anorganický vznik metanu se připisuje chemickým reakcím, které probíhají při tuhnutí magmatu.

Schéma laterální migrace ropy a plynu do strukturní pasti
Schéma strukturní pasti

Anorganicky vzniklé uhlovodíky byly popsány z oceánských hřbetů v Tichém a Atlantském oceánu.[4] Jejich množství jsou velmi malá a nacházejí se v tak nepřístupných hloubkách daleko od pevniny, že nemají komerční význam.

Biogeneze probíhá pouze v mělkých částech zemské kůry a jejími produkty jsou pouze plynné uhlovodíky (metan). Spočívá v přeměně organické hmoty drobnými mikroorganismy na metan. Methanogeny, drobné, metan produkující mikroorganismy, chemicky rozkládají organickou hmotu k výrobě metanu. Tyto mikroorganismy se běžně vyskytují v oblasti blízko povrchu, které jsou bez kyslíku. Tyto mikroorganismy také žijí ve střevech většiny zvířat, včetně člověka. Tvorba metanu tímto způsobem probíhá jen v blízkosti povrchu země, a většina tohoto metanu je obvykle ztracena do atmosféry. Za určitých okolností však může tento metan být zachycen v podpovrchových strukturních pastích a vytěžen jako zemní plyn. Příklad biogenního metanu je skládkový plyn.

Při pokračující subsidenci sedimentární pánve biogeneze ustává a začnou probíhat procesy termogenické. Při termogenické přeměně organické hmoty vznikají plynné uhlovodíky (zemní plyn), tekuté uhlovodíky (ropa) i pevné uhlovodíky (asfalt). Organický materiál se vlivem tepla a tlaku přemění nejprve na kerogen a pak na ropu a zemní plyn. Ropa se začíná tvořit při cca. 60 stupních Celsia termogenickým rozpadem (krakováním) kerogenu. Tento proces pokračuje až do cca. 120 stupňů Celsia. Při cca. 100 stupních začíná tvorba plynu, která pokračuje zhruba do 200 stupňů Celsia. Teplotnímu intervalu tvorby ropy se říká ropné okno (60-120 stupňů Celsia). Teplotnímu intervalu tvorby plynu se říká plynové okno (100-200+ stupňů Celsia). Podle tepelného toku v daně sedimentární pánvi se hloubka ropného okna pohybuje mezi 2–4 km a hloubka plynového okna mezi 3–6 km.

Bez ohledu na teplotní podmínky v pánvi jsou různé zdrojové horniny náchylné k vytváření různých typu uhlovodíků. Některé zdrojové horniny (mořské břidlice s vysokým obsahem organického materiálu) jsou schopné produkce kapalných uhlovodíků (ropy) i plynu. Produkce probíhá postupně podle zahřívání zdrojové horniny při subsidenci a procházením nejprve ropným oknem a pak plynovým oknem. Uhlí se tradičně považuje za zdrojovou horninu náchylnou ke tvoření plynu, avšak v určitých případech (v závislosti na typu uhlí) může tvořit i ropu.

Poté co zdrojová hornina dosáhne zralosti, nastane migrace. Plyn, někdy společně s ropou, migrují buď podél geologických zlomů (vertikální migrace) nebo podél porézních sedimentárních vrstev (laterální migrace). Typické příklady nosných vrstev při laterální migraci jsou porézní pískovce, některé vápence nebo i zvětralé vyvřelé horniny.

Poslední fáze je zachycení migrující ropy a plynu v tzv. ropné pasti, čímž vzniká jejich současná naleziště. Ropná past sestává z porézních hornin, které jsou v nadloží a po stranách utěsněné horninami nepropustnými. Ropné pasti jsou tvořeny jako geologické struktury (např. antiklinály, zlomové struktury), nebo stratigraficky (např. vyklinováním pískovce a faciálním přechodem do nepropustných břidlic). Těsnící horniny jsou většinou břidlice s vysokým obsahem jílu, ale i vyvřelé horniny, pokud nejsou zvětralé. Srdcem ropné pasti je pak vlastní porézní hornina (tzv. kolektorová hornina), kde se migrující ropa a plyn nahromadí. Typické kolektorové horniny jsou porézní pískovce nebo vápence korálových útesu. Klíčovým parametrem kolektorových hornin je jejich porozita a propustnost. Typická porozita se pohybuje od 8-35%, a typická propustnost od 100 Millidarcy (mD) do několika Darcy.

Schéma strukturní pasti se třífázovým kolektorem, obsahujícím vodu, ropy a plyn. Plyn se nahromadí v nejvyšší části pasti a vytváří tzv. plynovou čepičku.

Uvnitř kolektoru se jednotlivé tekutiny rozdělí podle relativních hustot. Plyn se nahromadí v nejmělčích částech ropné pasti, ropa níže a voda nejníže.

Zdrojové horniny, maturace, migrace, ropné pasti, kolektorové a těsnicí horniny jsou souhrnně nazývaný ropným systémem. Aby mohlo naleziště vzniknout, musí v dané sedimentární pánvi existovat všechny jeho elementy. Navíc musí jejich tvorba proběhnout ve správné sekvenci. Například tvorba ropných pasti musí proběhnou před migraci, jinak ropa a plyn budou migrovat až na povrch a uniknou do atmosféry. Studium elementů ropného systému je základem moderního průzkumu.

Průzkum[editovat | editovat zdroj]

3D model kolektoru, barvy znázorňují porozitu (červená=vysoká)
Semi-submersibilní vrtná souprava na moři
Vrtná souprava na souši

Moderní průzkum je založen na stejných principech jako průzkum na ropu. Základem je těsná integrace mnoha technických disciplín: geologie, geofyziky, paleontologie, geochemie, petrofyziky, ropného inženýrství a ekonomie. Práce se provádí v prostředí integrovaných týmu, v rámci nichž uvedené disciplíny těsně spolupracují.

Základem je vždy dobrá znalost podpovrchové strukturní stavby. Ta se vybuduje na základě analýzy seismických profilů ve 2D nebo 3D modelu a do jisté míry i ze satelitních snímků nebo z terénní práce. Geochemická, geologická a paleontologická data ze starších vrtů se musí integrovat do vznikajícího modelu tak, aby vznikl co nejpřesnější obrázek podpovrchových struktur.

Geochemik provede analýzu zdrojových hornin (pokud existují vzorky), a analýzu vzorků ropy buď z existujících vrtů nebo z míst kde ropa prosakuje na povrch. Tím se potvrdí věk a typ zdrojové horniny, a její stupeň termální maturace.

Paleontolog provede analýzu podpovrchových vzorků z vrtů a povrchových vzorků z výchozu. Určí věk hornin ve studované oblasti a v některých případech i jejich sedimentární původ. Ze studia fosilních společenstev se dá určit v jakém prostředí byla ta která hornina uložena, zda v mělkém moři nebo v hluboké vodě apod.

Geofyzik a geolog integrují výsledky paleontologické analýzy dohromady se seismickými profily, profily interpretují a společně zmapují oblast. Připraví strukturní podpovrchové mapy klíčových horizontů a identifikují možné prospekty k vrtání. Zvláštním úkolem geofyzika je získat ze seismických profilů kvantitativní informace o porozitě a kapalinovém obsahu studovaných horizontů. Tým potom společně s ropným inženýrem a ekonomem odhadne možné rezervy.

Jakýkoliv průzkum neodvratně obsahuje element rizika. Typický průzkumný vrt má naději na úspěch mezi 5-40%. Tým má za úkol toto riziko odhadnout.

Hlavice těžebního vrtu. Ropa, plyn a voda vytékají na povrch pod tlakem ložiska bez pomocí čerpadla. Průtok je regulován manuálně pomocí ventilů. Vytěžené produkty odtékají potrubím směrem doprava k procesní stanici

Průzkumné vrty jsou prvním stadiem hledání ropy a plynu. Když je nové ložisko objeveno, druhým stadiem jsou podpůrné vrty, které mají za úkol přesně vymezit ložisko a získat co nejvíce parametrů o kolektorových horninách. Tyto informace tým použije v modelování kolektorů. Nejdříve se připraví 3D statický model kolektorů že všech dostupných geologických a geofyzikálních dat. Ten se potom podrobí dynamické simulaci, při které se předpovídá tok tekutin (ropy, plynu a vody) skrz kolektor během produkce. Na základě této dynamické simulace tým potom navrhne optimální umístění těžebních vrtů. V tomto stádiu tým těžebních inženýrů navrhne povrchová těžební zařízení a jejich cenu.

Na základě této práce ekonomové přepracují ekonomický model peněžního toku během života ropného pole. Na základě toho management rozhodně, zda do projektu dále investovat a přikročit k těžbě. Pokud je rozhodnutí kladné, tým těžebních inženýrů postaví povrchová těžební zařízení a vrtní inženýři vyvrtají těžební vrty. Průzkumné vrty se ve většině případů nehodí pro produkci a jsou hned po vyvrtání a ukončení karotážních měření zacementovány.

Těžba[editovat | editovat zdroj]

Schéma ložisek zemního plynu.

Tradiční ložiska zemního plynu jsou strukturní pasti sestávající z porézní kolektorové horniny obklopené horninami nepropustnými (břidlice, sůl, vyvřeliny). Plyn se nahromadí v nejvyšší části pasti, kde může být navrtán a vytěžen. Pokud se jedná o dvoufázové ložisko (plyn a voda), optimální strategie je navrtat klasickým vertikálním vrtem samý vrchol struktury co nejdále od rozhraní plyn-voda. Cílem je, aby se co nejdéle zabránilo přítoků vody do vrtu. Pokud se jedná o třífázové ložisko (plyn-ropa-voda), ropa se musí vytěžit nejdříve a teprve poté přistoupit k těžbě plynové čepičky. Když by se plynová čepička vytěžila nejdříve v kolektoru by poklesl tlak a zvýšila by se viskozita zbývající ropy. To by mělo nutně za následek drastické snížení jejich vytěžitelných zásob.

Nekonvenční ložiska plynu je kolektivní název pro všechny zdroje zemního plynu kromě tradičních dvou- a třífázových kolektorů. Může se jednat o těžbu plynu přímo z původní zdrojové horniny, kde se plyn tvoří in-situ. Tomuto typu ložiska se říká břidlicový plyn. Zdrojové horniny jsou typicky břidlice s velmi nízkou propustností. Tradiční vertikální vrty se nedají použít, protože obnaží jen poměrně krátkou délku formace. Používají se proto vrty ukloněné nebo i horizontální, ve kterých délka horizontální sekce může dosáhnout až několika km. Cílem je obnažit co největší délku formace. Poté se přistoupí k hydraulickému štěpení formace, aby se vytvořily systémy umělých puklin, skrz které by do vrtů mohl začít proudit obsah formace (plyn a/nebo ropa). Hydraulické štěpení se u dlouhých horizontálních vrtů provádí v několika stádiích a nazývá se vícestupňové hydraulické štěpení.

Dalším nekonvenčním zdrojem je metan uhelných slojí (CBM, Coalbed Methane). Jedná se o metan uložený v uhlí procesem zvaným adsorpce. Tím se liší od typického pískovce nebo jiného tradičního ložiska. Nazývá se "sladký plyn", protože obsahuje málo sirovodíku. Je v téměř tekutém stavu. Na rozdíl od tradičních ložisek obsahuje velmi málo těžších uhlovodíků jako je propan nebo butan, a žádný kondenzát. Často obsahuje až několik procent oxidu uhličitého. Některé uhelné sloje, jako jsou ložiska v Illawarra v Austrálii, obsahují naopak málo metanu a převládající plyn je oxid uhličitý. Přítomnost metanu v uhelných slojích je známá z podzemní těžby uhlí, kde představuje vážné bezpečnostní riziko.

Těžba je založena na principu desorpce, která probíhá podle křivky Langmuirovy adsorpční izotermy. Adsorbovaný metan se uvolní, pokud se sníží v uhelné sloji tlak. Metan je těžen vrtáním do uhelné sloje s následným čerpáním vody ze sloje. Pokles tlaku umožňuje desorpci metanu a jeho průtok v plynném skupenství na povrch. Pod tlakem je pak plynovodem distribuován.

Dalším nekonvenčním zdrojem jsou zmrzlé hydráty metanu pod mořským dnem.

Odkazy[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

  1. Naturalgas.org: Typické složení zemního plynu Background information.
  2. [1]
  3. [2]
  4. Holm a Charlou, 2001: Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth and Planetary Science Letters, vol. 191, cislo 1–2, 30. srpna 2001, str. 1–8

Literatura[editovat | editovat zdroj]

  • FÍK, Josef. Zemní plyn: tabulky, diagramy, rovnice, výpočty, výpočtové pravítko. Praha : Agentura ČSTZ, 2006. ISBN 80-86028-22-4
  • Nils G. Holm a Jean Luc Charlou, 2001, Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge; Earth and Planetary Science Letters, vol. 191, cislo 1–2, 30. srpna 2001, str. 1–8

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]

Logo Wikimedia Commons
Wikimedia Commons nabízí obrázky, zvuky či videa k tématu