Buněčná stěna

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Buněčná stěna je pevná struktura, která vzniká na povrchu buněk bakterií, archeí, hub, rostlin a řas. Plní ochrannou funkci a funkci vnější kostry buňky. Jde o první pozorovanou buněčnou strukturu na mikroskopické úrovni – za pomoci jednoduchého světelného mikroskopu ji u příčného řezu korkem sledoval Robert Hooke v roce 1665.

Buněčná stěna rostlin[editovat | editovat zdroj]

Na tomto obrázku rostlinné buňky je buněčná stěna znázorněna zeleně. (Pod ní je žlutě označena cytoplazmatická membrána.)

Buněčná stěna rostlin má několik funkcí:

  1. tvoří vnější kostru buňky, která brání její expansi v důsledku osmózy a jí vznikajícího turgoru
  2. tvoří mechanické struktury v rámci celé rostliny
  3. tvoří ochranný obal, chránící rostlinu před prostředím a patogeny
  4. tvoří sklad určitých makromolekulárních látek

Složení buněčné stěny u rostlin[editovat | editovat zdroj]

Základní strukturní kostru buněčné stěny tvoří celulózy, hemicelulózy a pektiny. Kromě těchto základních látek existují další, kterými buňka inkorpuruje buněčnou stěnu. V první řadě jde o proteiny, z nichž nejdůležitější jsou: glykoproteiny bohaté na hydroxyprolin (HPGP), arabinogalaktanové proteiny (AGP), proteiny bohaté na glycin (GRPs) a proteiny bohaté na prolin (PRPs). S výjimkou na glycin bohatých proteinů jde ve všech případech o glykosiláty obsahující hydroxyprolin. Buněčná stěna rostliny může být navíc (zejména v oblasti sekundárních a terciárních vrstev) vyztužena organickými (lignin, kutin, suberin, vosky) či anorganickými látkami.

Vznik a struktura buněčné stěny[editovat | editovat zdroj]

Střední lamela vzniká především z pektinových látek (zejména pak hořečnatých a vápenatých pektinů) a při dělení buňky a v budoucnu odděluje buněčné stěny sousedních buněk. Na ni se přikládá primární stěna obsahující zejména celulózy, hemicelulózy a pektiny, přičemž celulózová vlákna jsou v ní uspořádány v síťovině. Je pružná a snadno roste do šířky přikládáním nových celulózních mikrofibril, takže nijak nepřekáží růstu buněk. K primární stěně se po ukončení růstu buňky může zevnitř přikládat ještě sekundární stěna, která je zpravidla výrazně silnější, je obohacena mnoha organickými a anorganickými látkami a její celulózní vlákna jsou uspořádána souběžně. Vznik sekundární stěny se označuje za tloustnutí buněčné stěny a leckdy může vést až k odumření protoplastu.

Tloustnutí buněčné stěny se často omezuje jen na určitá místa v rostlině a nemusí být plošně v celé buňce – například u cév s vodivou funkcí jsou charakteristická tloustnutí kruhovitá či šroubovitá.

V buněčné stěně se zpravidla nacházejí tzv. tečky (malé otvory), kterými procházejí plazmodezmy – vlákna cytoplazmy spojující protoplasty sousedních buněk. V rámci rostlinných pletiv či celých rostlin se pak často užívá pojem symplast (pro navzájem propojené protoplasty sousedních buněk) a apoplast (pro systém jejich buněčných stěn a mezibuněčných prostor).

Růst buněčné stěny[editovat | editovat zdroj]

Vedle tloustnutí má buněčná stěna možnost růst, tedy přirůstat laterálně a zvětšovat svůj obvod a povrch. Buněčná stěna je sice do jisté míry pružná, ale ne do té míry aby umožňovala další růst buňky, která je uvnitř svých stěn uvězněna. K tomu aby to bylo možné je zapotřebí nejprve konzistentní strukturu celulózových a pektinových vláken rozvolnit. Buněčná stěna neroste také sama od sebe, ale na základě „žádosti“ z buněčného protoplastu a se spoluprací cytoplazmy (je potřeba do Buněčné stěny dopravovat nový stavební materiál).

Proces. Na začátku musí buňka sama jako celek získat impuls k růstu. Podmínkou pro tento růst je přítomnost auxinu, jehož změna v aktuální koncentraci uvnitř buňky (ať už na základě syntézy nebo spíše díky transportu do buňky z okolí) může být jedním z takovýchto signálů. Auxin pak začne působit na transport vodíkových iontů ven z buňky přes membránu do buněčné stěny. Následné okyselení buněčné stěny způsobí aktivaci enzymů známých jako expanziny, které narušují vazby ve struktuře buněčné stěny. V takto narušené buněčné stěně je celulózo-pektinová síťovina uvolněná a pod tlakem, který přichází zevnitř buňky (s rostoucím obsahem buňky, obzvláště vakuol a jimi generovaného turgoru) se může více roztáhnout. Nově roztažená původní kostra se znovu vyzpevní jednotlivými složkami buněčné stěny.

Buněčná stěna hub[editovat | editovat zdroj]

Pouze některé druhy říše hub vytvářejí buněčnou stěnu. Ta je tvořena chitinem. Působí jako ochranný faktor, vnější kostra a ochrana před osmotickou lyzí. Mnoho fungicidů je založeno na principu narušování této stěny. Složení a struktura buněčné stěny hub závisí více než u jiných organismů na prostředí, životním cyklu a úloze buňky.

Prokaryotická buněčná stěna[editovat | editovat zdroj]

Primární funkcí buněčné stěny bakterií je vnější opora a ochrana před prostředím, resp. (u patogenů) před imunitním systémem hostitele. Důležitou roli hraje též ochrana před osmotickou lyzí – rozdíly mezi vnitřním a vnějším prostředím dané osmotickými jevy mohou vyvolat vnitřní přetlak až 15 atmosfér.

Rozlišujeme dva základní typy uspořádání bakteriální buněčné stěny:

Buněčná stěna grampozitivních bakterií je tlustší a skládá se převážně z peptidoglykanů. Je barvitelná krystalickou violetí, kterou z ní nelze vymýt alkoholem – z Gramova barvení tedy vychází zbarvena modrofialově. Mnoho antibiotik je svým účinkem zaměřeno na narušení struktury buněčné stěny (např. penicilin).

Buněčná stěna gramnegativních bakterií je považována za odolnější, pokud jde o vzdorování antibiotikům a imunitnímu systému. Je podstatně tenčí, peptidoglykanová vrstva je zredukována a převahu mají liposacharidy. Svrchu je překryta druhou membránou. Je barvitelná krystalickou violetí, ale alkohol ji z ní vymývá, pročež z Gramova barvení vychází růžová, dodatečně zabarvena safraninovým roztokem.

Organismy říše Archea nemají buněčnou stěnu tvořenou peptidoglykany, ale některé z nich v ní obsahují pseudopeptidoglykan podobné struktury a funkce.

Reference[editovat | editovat zdroj]

  • Kincl, L.; Kincl, M. a Jakrlová J.: Biologie rostlin pro 1. ročník gymnázií; 1993