Černobylská havárie

Z Wikipedie, otevřené encyklopedie
Skočit na navigaci Skočit na vyhledávání
Sarkofág provizorně uzavírající 4. blok černobylské elektrárny

Černobylská havárie je dosud nejzávažnější havárií v historii jaderné energetiky. V časných ranních hodinách v sobotu 26. dubna 1986 během technické zkoušky v Černobylské jaderné elektrárně na severu Ukrajiny došlo k abnormálnímu vzrůstu výkonu a následnému prudkému zvýšení tlaku páry v jaderném reaktoru typu RBMK-1000 ve 4. bloku elektrárny. V 01:23 moskevského času mohutná parní expanze odhodila víko reaktoru a vyústila v požár, sérii dalších explozí a roztavení reaktoru. Aktivní zóna reaktoru a související bezpečnostní systémy byly okamžitě zničeny nebo těžce poškozeny. Okolí reaktoru bylo kontaminováno radioaktivními úlomky grafitu a palivových tyčí.

Do atmosféry se uvolnil radioaktivní mrak, který postupoval západní částí Sovětského svazu, Východní Evropou a Skandinávií do celé severní polokoule.[1] Byly kontaminovány rozsáhlé oblasti Ukrajiny, Běloruska a Ruska. Široké okolí elektrárny včetně města Pripjať evakuováno a změněno v uzavřenou černobylskou zónu. V období 1986–2000 došlo k přesídlení více než 350 000 lidí.[2] Budova reaktoru byla obestavěna železobetonovým sarkofágem, který má zamezit další kontaminaci okolního prostředí.

Je obtížné přesně zaznamenat počet úmrtí způsobených událostmi v Černobylu – odhady se pohybují od 31 zemřelých (přímo při havárii a do tří měsíců po ní)[3] až po bezmála milion[4]. Dle Dany Drábové, předsedkyně Státního úřadu pro jadernou bezpečnost, se celkový počet obětí odhaduje na 4000.[5]

Příčin havárie bylo více: typ použitého reaktoru RBMK, nevhodně provedený pokus a nedostatečná kompetence personálu. K rozsahu následků přispěly nepřipravenost a nevhodné kroky v krizovém postupu řešení následků havárie. Černobylská havárie je jednou ze dvou jaderných havárií ohodnocených podle Mezinárodní stupnice jaderných událostí nejvyšším stupněm sedm (druhou je havárie elektrárny Fukušima I v Japonsku v březnu 2011).

Elektrárna[editovat | editovat zdroj]

Poloha černobylské elektrárny
Podrobnější informace naleznete v článku Černobylská jaderná elektrárna.

Černobylská elektrárna je umístěna 2 km od města Pripjať, 18 km od města Černobyl, 10 km od hranic s Běloruskem a 110 km severně od Kyjeva. V době havárie byly v provozu čtyři jaderné bloky, každý o výkonu 950 MW elektrické energie (3,2 GW tepelné energie), které dohromady tvořily asi 10 % ukrajinské výroby elektrické energie. Stavba elektrárny začala v 70. letech 20. století, reaktor č. 1 byl dokončen v roce 1977, následován č. 2 (1978), č. 3 (1981) a č. 4 (1983). Dva další bloky (č. 5 a č. 6, každý také o výkonu 950 MW) byly v době havárie rozestavěny. Všechny čtyři reaktory byly typu RBMK-1000[6], tedy chlazené obyčejnou vodou a moderované grafitem.

Havárie[editovat | editovat zdroj]

Schéma reaktoru RBMK

Průběh událostí[editovat | editovat zdroj]

Na 25. dubna 1986 bylo naplánováno odstavení reaktoru bloku číslo 4 pro pravidelnou údržbu. Bylo rozhodnuto využít této příležitosti k otestování funkce regulátoru magnetického pole rotoru. Zkouška měla ověřit, zda v případě současného výpadku zdrojů elektrické energie bude turbogenerátor při svém setrvačném doběhu schopen ještě zhruba 40 sekund napájet hlavní oběžná čerpadla nezbytná pro chlazení reaktoru.[7] (Elektrárna disponovala záložními dieselovými generátory, ale trvalo by asi 75 sekund, než by dosáhly dostatečného výkonu.)

Podle plánu experimentu měl být reaktor použit k roztočení turbíny, poté měla být turbína od reaktoru odpojena a měla se dál točit jen vlastní setrvačností. Výstupní výkon reaktoru byl snížen z normálního výkonu 3,2 GW na 700 MW tepla, aby test probíhal při bezpečnějším, nízkém výkonu. Snižování výkonu bylo zahájeno v 1 hodinu po půlnoci. Ve 13:05 byl již výkon reaktoru snížen na polovinu a došlo k odstavení prvního turbogenerátoru, nato byl odpojen i systém havarijního chlazení.[7]

Krátce poté však dispečink energetických závodů požádal o udržení stávajícího výkonu bez dalšího snižování, aby nedošlo k omezení výroby v továrnách. Experiment byl tudíž na téměř 9 hodin pozastaven a mezitím nastoupila nová směna operátorů, s nedostatkem informací o probíhajícím dění.[7]

Ve 23:10 bylo zahájeno další snižování výkonu reaktoru. Skutečný výstupní výkon ovšem z neznámých důvodů (pravděpodobně chybou operátora) klesl až k 30 MW. Následkem toho se prudce zvýšila koncentrace neutrony pohlcujícího produktu štěpení – xenonu 135; tento produkt by se normálně při vyšších hodnotách výkonu v reaktoru ihned přeměňoval dále. Tomuto jevu spojenému s přechodným poklesem reaktivity se říká xenonová otrava reaktoru.[8] Po dobu mnoha hodin nedovolí obnovit činnost reaktoru, dokud nedojde k samovolnému rozpadu izotopu. V experimentu by nebylo možno pokračovat a reaktor by musel zůstat nějakou dobu mimo provoz. Obsluha se proto snažila zvýšit výkon a udržet reaktor v chodu vysunováním regulačních tyčí.[9] Operátoři přitom měli udržovat tzv. operativní zásobu reaktivity a tento předpis nedodrželi.[10] Nebyli informováni, proč je to důležité, a technicky neměli možnost aktuální zásobu sledovat během experimentu.

Přestože se nedařilo dostatečně zvýšit výkon, obsluha se rozhodla nezastavit reaktor a pokračovat v experimentu při 200 MW namísto plánovaných 700 MW. Kvůli přemíře neutrony pohlcujícího xenonu 135 byly regulační tyče vysunuty z reaktoru o něco dále, než by bylo při normálním bezpečném řízení přípustné. Jako součást experimentu byla 26. dubna v 1:05 spuštěna hlavní cirkulační čerpadla[10] poháněná turbínovým generátorem; vodní tok takto generovaný překročil meze stanovené bezpečnostní regulací. Vodní tok se ještě zvýšil v 1:19[10]; a protože voda také pohlcuje neutrony, toto další zvýšení vodního toku si vynutilo dokonce odstranění i manuálně ovládaných regulačních tyčí[10], což vytvořilo vysoce nestabilní a nebezpečné provozní podmínky. Přesto žádný předpis nezakazoval, aby všechna čerpadla pracovala naplno.

V 1:23:04 začal experiment.[11] Nestabilní stav reaktoru se nijak neprojevil na kontrolním panelu a nezdálo se, že by se kdokoliv z obsluhy reaktoru obával nebezpečí. Přívod elektřiny do vodních čerpadel byl vypnut, a protože je poháněl turbínový generátor jen setrvačností, vodní tok se zmenšoval. Turbína byla odpojena od reaktoru a tlak páry v jádru reaktoru rostl. Jak se chladicí kapalina zahřívala, v jejím potrubí se začaly vytvářet kapsy páry. Návrh RBMK grafitem moderovaného reaktoru v Černobylu se vyznačuje velkým pozitivním dutinovým koeficientem, což znamená, že při absenci neutrony pohlcujícího efektu vody se výkon reaktoru prudce zvyšuje a reaktor se postupně stává stále nestabilnějším a nebezpečnějším.

V 1:23:40 stiskli operátoři tlačítko „AZ5“ (аварийная защита – havarijní ochrana), které znamená rychlé odstavení reaktoru[12] – kompletní zasunutí všech regulačních tyčí, včetně manuálně ovládaných tyčí, které byly vytaženy dříve. Není jasné, zda šlo o nouzové opatření, či zda to byl rutinní krok zastavení reaktoru po skončení experimentu (bylo naplánováno zastavení reaktoru pro pravidelnou údržbu). Obvykle se předpokládá, že rychlé odstavení bylo spuštěno jako odpověď na neočekávané prudké zvýšení výkonu.

Naproti tomu Anatolij Stěpanovič Ďatlov, provozní zástupce hlavního inženýra, napsal ve své knize Černobyl. Jak to bylo: „Před 01:23:40 systém centrální kontroly nezaregistroval žádné změny parametrů, které mohly ospravedlnit rychlé odstavení. Komise nashromáždila a analyzovala velké množství materiálů a, jak se vyslovila ve své zprávě, nemohla najít důvod, proč bylo rychlé odstavení spuštěno. Není třeba hledat důvod. Reaktor byl po skončení experimentu jednoduše odstaven.“[13]

Kvůli pomalému mechanismu spouštění regulačních tyčí (18–20 sekund do ukončení operace[12]), jejich specifické konstrukci[pozn. 1] a dočasnému odpojení chladicího okruhu došlo ke zvýšení rychlosti reakce. Zvýšená produkce tepla způsobila deformaci šachet regulačních tyčí. Tyče se zasekly poté, co byly zasunuty asi do jedné třetiny a nebyly proto schopné zastavit reakci. V 1:23:47 vzrostl výkon reaktoru na asi 30 GW, tedy desetkrát více než normální operační výstup.

Prudce zvýšený tlak páry způsobil velkou parní expanzi, která odhodila víko reaktoru o hmotnosti 1 000 t a potrhala chladicí potrubí. Po několika sekundách následovala druhá, silnější exploze. Pravděpodobně vybuchl vodík a oxid uhelnatý, které vznikly v přehřátém reaktoru reakcí uhlíku s vodní párou. Síla druhé exploze se odhaduje na ekvivalent 10 tun TNT. Došlo ke zničení horních pater a střechy celé haly.[15]

Střecha elektrárny byla pokryta hořlavým asfaltem. Ten se vznítil od žhavých trosek vyletujících z reaktoru. Hrozilo, že se požár rozšíří i na 3. blok. Toto nebezpečí bylo odvráceno za cenu toho, že mnozí z hasičů dostali vysokou dávku radiace. Požár ovšem přispěl k rozptýlení radioaktivního materiálu a celkové kontaminaci vnějších oblastí.

Existují spory ohledně přesného pořadí událostí po 1:22:30 díky nesrovnalostem mezi zprávami očitých svědků a záznamy z elektrárny. Nejpřijímanější verze byla již popsána výše. Podle této teorie nastala první exploze asi v 1:23:47, sedm sekund poté, co operátoři spustili „rychlé odstavení“. Někdy se prohlašuje, že exploze se stala dříve nebo že následovala okamžitě po aktivaci havarijní ochrany (to byla pracovní verze sovětské komise studující havárii). Rozdíl je důležitý, protože pokud by se reaktor dostal do kritického stavu několik sekund po spuštění rychlého odstavení, jeho selhání se musí připsat špatné konstrukci regulačních tyčí, naproti tomu exploze v okamžiku spuštění rychlého odstavení by spíše ukazovala na chybu operátorů. V čase 1:23:39 byla v oblasti Černobylu zaznamenána slabá seismická událost, podobná zemětřesení o magnitudě 2,5. Tato událost mohla být způsobena explozí nebo mohlo jít jen o náhodnou shodu okolností. Situaci komplikuje fakt, že tlačítko AZ-5 (spuštění mechanizmu rychlé odstávky reaktoru) bylo stisknuto více než jednou a Alexander Akimov, vedoucí směny, který tlačítko AZ-5 stiskl (zemřel o dva týdny později), řekl těsně před smrtí: „Nevím, jak se to mohlo stát. Vše jsem udělal, jak jsem měl.“

Okamžité řízení krize[editovat | editovat zdroj]

Dopady havárie byly ještě zhoršeny nekompetencí místního vedení a nedostatkem náležitého vybavení. Všechny dozimetry v budově čtvrtého reaktoru kromě dvou měly limit 1 mR/s, tj. 3,6 R/h. Zbývající dva měly limit 1 000 R/s, ale přístup k jednomu z nich byl zablokován explozí a druhý selhal ihned po zapnutí. Proto si směna v reaktoru mohla být jista pouze tím, že hodnoty radiace ve většině budov reaktoru přesahují hodnoty 4 R/h (skutečná úroveň byla v některých oblastech více než 20 000 R/h; smrtelná dávka je asi 500 rentgenů po více než 5 hodin). To dovolilo náčelníku směny Alexandru Akimovovi předpokládat, že reaktor zůstal nedotčen. Důkazy opaku, jako například kousky grafitu a paliva reaktoru ležící kolem budov, byly ignorovány a údaje jiného dozimetru přineseného ve 4:30 byly odmítnuty s tím, že přístroj musí být vadný. Akimov zůstal se směnou v budově reaktoru až do rána a pokoušel se do reaktoru čerpat vodu. Nikdo nenosil ochranný oblek. Většina z nich, včetně Akimova samotného, zemřela na nemoc z ozáření během tří týdnů následujících po havárii.

Brzy po havárii přijeli hasiči uhasit požár. Nikdo jim neřekl, že sutiny a kouř jsou nebezpečně radioaktivní. Příčinu požáru neznali a proto hasili vodou i reaktor samotný, v němž byla teplota asi 2 000 °C. Při této teplotě se voda rozkládala na vodík a kyslík a opětné slučování těchto látek provázely výbuchy, které dále přispěly k úniku radioaktivity. Ohně mimo reaktor byly uhašeny v 5 hodin, mnoho hasičů však utrpělo ozáření vysokými dávkami radiace. Vládní komisař určený k vyšetření havárie přijel do Černobylu ráno 26. dubna. V té chvíli byli již dva lidé mrtvi a 52 bylo hospitalizováno. V noci z 26. na 27. dubna – více než 24 hodin po explozi – komisař, konfrontovaný s dostatečnými důkazy o vysoké úrovni radiace a s množstvím případů ozáření, přiznal zničení reaktoru a přikázal evakuaci blízkého města Pripjať.

V neděli 27. dubna v 01:13 a 02:13 byly vypnuty bloky 1 a 2. Z vrtulníků bylo na reaktor svrženo 40 tun karbidu boričitého, 800 tun dolomitu, 2400 tun olova a 1800 tun písku a jílu.[16] Únikům radioaktivního materiálu do ovzduší se podařilo zamezit až po devíti dnech od havárie. Aby byl zapečetěn reaktor a jeho obsah, byl kolem něj od června do listopadu 1986 postaven velký železobetonový kryt, přezdívaný „sarkofág“. Sovětská vláda vyslala na místo pracovníky, aby je vyčistili, posbírali radioaktivní trosky vyvržené z reaktoru a umístili je dovnitř budov. Mnoho těchto likvidátorů (členů armády a jiných pracovníků) pracovalo bez dostatečných ochranných pomůcek.

Vyšetřování[editovat | editovat zdroj]

Analýza Mezinárodní agentury pro atomovou energii (INSAG-1) z roku 1986 označila za hlavní příčinu havárie akce operátorů. V lednu 1993 ale vydala MAAE revidovanou analýzu (INSAG-7, vročeno 1992), v níž vinu přisoudila jak konstrukci reaktoru, tak chybám operátorů.

Dle revidované analýzy INSAG-7 přispěly k nehodě následující faktory:

  • „Zařízení, které nesplňovalo bezpečnostní normy platné v době, kdy bylo navrženo, a dokonce obsahovalo nebezpečné funkce;
  • Nedostatečná bezpečnostní analýza;
  • Nedostatečná pozornost věnovaná nezávislému bezpečnostnímu dohledu;
  • Provozní postupy nejsou uspokojivě založeny na bezpečnostní analýze;
  • Nedostatečná a neúčinná výměna důležitých bezpečnostních informací jak mezi operátory, tak mezi operátory a projektanty;
  • Nedostatečné porozumění bezpečnostním aspektům zařízení ze strany operátorů;
  • Nedostatečné dodržování formálních požadavků provozních a zkušebních postupů ze strany operátorů;
  • Nedostatečně účinný regulační režim, který nedokázal čelit tlakům na výrobu;
  • Obecný nedostatek bezpečnostní kultury v jaderných záležitostech, a to jak na národní, tak na místní úrovni.“[17]

Soud s pracovníky elektrárny proběhl v červenci 1987. Ředitel Černobylské jaderné elektrárny Brjuchanov, hlavní inženýr Fomin a provozní zástupce hlavního inženýra Ďatlov byli odsouzeni na 10 let pracovního tábora. Náčelník směny Rogoškin dostal 5 let, náčelník reaktorového cechu Kovalenko 3 roky, inspektor Gosatomnadzoru Lauškin 2 roky.[18] Všichni byli propuštěni po odpykání poloviny trestu[19] kromě Lauškina, který zemřel ve vězení[20].

Bezprostřední následky[editovat | editovat zdroj]

Mapa ukazující kontaminaci Běloruska, Ruska a Ukrajiny radioaktivním 137Cs.
     Uzavřené zóny
více než 40 Ci/km²
     Nepřetržitě sledováná zóna
15—40 Ci/km²
     Občasně sledováná zóna
5—15 Ci/km²
     Zóna bez pojmenování
1—5 Ci/km²

Dva pracovníci elektrárny (Valerij Choděmčuk a Vladimir Šašenok) zemřeli v den havárie. 237 lidí bylo ihned po havárii hospitalizováno a u 134 z nich byl diagnostikován akutní radiační syndrom; z těchto 134 zemřelo (do 3 měsíců) 28. V následujících 10 letech z těchto 237 zemřelo 14 dalších (ne nutně v důsledku radiace). [21] Mnozí z obětí byli hasiči a záchranáři snažící se dostat havárii pod kontrolu, kteří nebyli plně informováni, jak nebezpečné je ozáření.

Černobylský 4. reaktor obsahoval asi 190 tun oxidu uraničitého a produktů štěpení. Odhady podílu uniklého materiálu se pohybují mezi 13 a 30 procenty. Kontaminovaný materiál se pohyboval atmosférou v závislosti na počasí. Podle zpráv sovětských a západních vědců dopadlo z kontaminace, která postihla území dřívějšího Sovětského svazu, 60 % na Bělorusko. Rovněž byla kontaminována rozsáhlá oblast Ruské federace jižně od Brjansku a části severozápadní Ukrajiny.

Na počátku byl Černobyl utajovanou katastrofou. První důkazy, že se stala velká jaderná havárie, nepřinesly sovětské zdroje, ale pocházejí ze Švédska.[22] 27. dubna pracovníci Forsmarkské jaderné elektrárny (přibližně 1 100 km od Černobylu) nalezli radioaktivní částice na svém oblečení. Pátrání prokázalo, že problém není ve švédských elektrárnách, což ukázalo na vážný jaderný problém v západní části Sovětského svazu. Ještě 1. května se v Kyjevě konaly obvyklé prvomájové manifestace, neboť obyvatelstvo nebylo o katastrofě informováno. Cyklistický Závod míru (Varšava–Berlín–Praha) byl dokonce v těchto dnech přemístěn z ČSSR do Kyjeva.

Oficiálně nebylo informováno o zamoření ani obyvatelstvo tehdejšího Československa, přestože zvýšenou radioaktivitu zaznamenali pracovníci elektrárny Dukovany již v pondělí 28. dubna 1986. V noci z 29. na 30. dubna 1986 zachytili stopy kontaminace ovzduší v rámci běžně prováděných měření, což následně potvrdila data z Krajských hygienických stanic.[7] Odhadované dávky ozáření obyvatelstvu však byly poměrně nízké, takže nebyla zahájena žádná zvláštní protiopatření. Od 1. května 1986 ovšem začal být pravidelně kontrolován obsah radionuklidů v mléce a mléčných výrobcích, později i v pitné vodě, zelenině, obilninách, mase, ale i v krmivu pro dobytek, v houbách a lesních plodech.[7]

Pracovníci a likvidátoři[editovat | editovat zdroj]

Související informace naleznete také v článku Seznam obětí černobylské havárie.

Pracovníky účastnící se obnovy a vyčištění po havárii zasáhly vysoké dávky radiace. Ve většině případů nebyli vybaveni osobními dozimetry měřícími množství obdržené radiace, takže velikost těchto dávek mohli odborníci jen odhadovat. I tam, kde se dozimetry používaly, se dozimetrické procedury lišily. O některých pracovnících se předpokládá, že odhady dávek radiace v jejich případě jsou mnohem přesnější než u jiných. Podle sovětských odhadů se 300 000 až 600 000 lidí účastnilo vyčištění 30 km evakuační zóny kolem reaktoru, ale mnoho z nich vstoupilo do zóny až 2 roky po havárii. (Odhady množství likvidátorů – pracovníků přivezených do oblasti na řízení krize a práce na obnově – se liší; Světová zdravotnická organizace například uvádí sumu 800 000, a také Rusko počítá mezi likvidátory některé lidi, kteří ve skutečnosti v kontaminovaných oblastech nepracovali). V prvním roce po havárii se množství lidí pracujících na vyčištění zóny odhadovalo na 211 000 a tito pracovníci obdrželi odhadovanou průměrnou dávku 165 mSv (16,5 Rem).

Civilisté[editovat | editovat zdroj]

Opuštěné lodě na řece Pripjať

Některé děti byly v kontaminovaných oblastech vystaveny vysokým dávkám až 50 Gy, což zvýšilo výskyt rakoviny štítné žlázy, protože přijímaly radioaktivní jód, izotop s krátkým poločasem rozpadu, z místního kontaminovaného mléka. Několik studií potvrzuje, že výskyt rakoviny štítné žlázy mezi dětmi v Bělorusku, Ukrajině a Rusku prudce vzrostl. MAAE poznamenává, že „1 800 dokumentovaných případů rakoviny štítné žlázy u dětí, kterým bylo 14 a méně let ve chvíli, kdy se stala havárie, je mnohem vyšší hodnota než normálně,“ ale neuvádí očekávanou běžnou úroveň. Vyskytující se typy dětské rakoviny štítné žlázy jsou velké a agresivní, ale podaří-li se je včas rozpoznat, lze je vyléčit. Léčba spočívá v operaci následované aplikací radioaktivního jódu 131 na potlačení metastáz. Tato léčba se dosud jeví úspěšnou u všech diagnostikovaných případů.

Na konci roku 1995 spojila Světová zdravotnická organizace téměř 700 případů rakoviny štítné žlázy u dětí a adolescentů s černobylskou havárií a mezi nimi asi 10 úmrtí připsala radiaci. Na druhou stranu, ze zaznamenaného výrazného nárůstu rakoviny štítné žlázy vyplývá, že je alespoň částečně důsledkem rentgenování. Typická čekací doba radiací vyvolané rakoviny štítné žlázy je asi 10 let; ale zvýšení dětské rakoviny štítné žlázy v některých regionech je pozorováno již od roku 1987. Pravděpodobně se toto zvýšení buďto nevztahuje k havárii, nebo jsme dosud mechanismu stojícímu za ním správně neporozuměli.

Dosud nelze rozpoznat žádné zvýšení leukémie, očekává se však, že bude jasně zaznamenáno v následujících několika letech společně s nárůstem výskytu jiných rakovin, i když pravděpodobně statisticky nerozpoznatelným. Žádné zvýšení připsatelné Černobylu se nepodařilo prokázat u vrozených vad, nepříznivých výsledků těhotenství ani u jiných nemocí způsobených radiací u obecné populace ať už v kontaminovaných oblastech nebo ještě dále.

Dlouhodobé dopady[editovat | editovat zdroj]

Brzy po havárii byl největším zdravotním rizikem radioaktivní jód 131I s poločasem rozpadu 8 dnů. Dnes budí největší obavy kontaminace půdy izotopy stroncia 90Sr a cesia 137Cs, které mají poločas rozpadu kolem 30 let. Nejvyšší koncentrace 137Cs byly nalezeny v povrchových vrstvách půdy, kde jsou absorbovány rostlinami, hmyzem a houbami a dostávají se tak do místního potravního řetězce. Dřívější testy (kolem roku 1997) ukázaly, že v kontaminovaných oblastech množství 137Cs ve stromech stále vzrůstá. Existují důkazy, že se kontaminace přesouvá do podzemních zvodní a uzavřených vodních rezervoárů jako jsou jezera a rybníky (2001, Germenchuk). Předpokládá se, že hlavním způsobem odstranění kontaminace bude přirozený rozpad 137Cs na stabilní izotop barya 137Ba, neboť vymývání deštěm a povrchovou vodou se ukázalo jako zanedbatelné.

Globální dopad[editovat | editovat zdroj]

Plavecký bazén Lazurnyj
v opuštěném městě Pripjať

Jak dokládají poznámky MAAE, přestože černobylská havárie uvolnila tolik radioaktivní kontaminace jako 400 bomb z Hirošimy, byla její celková velikost asi 100× až 1 000× menší než kontaminace způsobená atmosférickými testy jaderných zbraní v polovině 20. století. Lze proto tvrdit, že ačkoliv byla černobylská havárie obrovskou lokální katastrofou, nepřerostla v katastrofu globální.

Dopad na přírodu[editovat | editovat zdroj]

Podle zpráv sovětských vědců na první mezinárodní konferenci o biologických a radiologických aspektech černobylské havárie (konané v září 1990) dosáhla úroveň spadu v 10 km zóně kolem elektrárny až 4,81 GBq/m². Tak zvaný „Rudý les“ z borovic zničený silným radioaktivním spadem leží v této 10 km zóně, začíná hned za komplexem reaktoru. Název lesa pochází z dnů po havárii, kde se stromy jevily temně rudé, jak hynuly na následky ozáření. Během vyčišťovacích operací po havárii byla většina z 4 km² lesa srovnána se zemí a spálena. Území Rudého lesa zůstalo jednou z nejvíce kontaminovaných oblastí na světě. Na druhou stranu se ukazuje, že jde o lokalitu bohatou na výskyt mnoha ohrožených druhů, protože není osídlena člověkem.[23][24] Ale i půda a lesy ze širokého okolí byly zasaženy radioaktivním spadem. Proto i v současnosti trvá hrozba lesního požáru, který by do ovzduší nad Evropu rozšířil radiaoaktivní prvky.[25]

Evakuace obyvatel[editovat | editovat zdroj]

Opuštěná vesnice v uzavřené zóně

Sovětští činitelé zahájili evakuaci obyvatel z oblasti Černobylu 36 hodin po havárii. V květnu 1986, o měsíc později, už byli přemístěni všichni, kdo žili v okruhu 30 km kolem elektrárny (asi 116 000 lidí). Celkem bylo na území Běloruska, Ruska a Ukrajiny evakuováno nebo přesídleno v období 1986–1990 118 400 lidí, v období 1991–2000) dalších 232 000 lidí, celkem tedy 350 400 lidí.[2]

Ministerstvo zdravotnictví předpokládá po následujících 70 let 2% zvýšení úrovně rakoviny u většiny obyvatelstva, která byla zasažena (informační zdroje se liší) 5–12 EBq (tj. 5–12×1018 Bq) radioaktivní kontaminace uvolněné z reaktoru. Dalších 10 jedinců zemřelo v důsledku havárie na rakovinu.

Podle zpráv sovětských vědců bylo 28 000 km² kontaminováno 137Cs o úrovni vyšší než 185 kBq/m². V této oblasti žilo přibližně 830 000 lidí. Asi 10 500 km² bylo kontaminováno 137Cs o úrovni vyšší než 555 kBq/m². Z této plochy zhruba 7 000 km² leží v Bělorusku, 2 000 km² v Ruské federaci a 1 500 km² na Ukrajině. V této oblasti žije asi 250 000 lidí. Jejich zprávy potvrdil International Chernobyl Project Mezinárodní agentury pro atomovou energii.

Dnes je dříve zcela evakuovaná oblast kolem elektrárny rozdělena na dvě zóny. V té první žije asi 600 starších lidí, kteří se do oblasti dobrovolně vrátili a dostávají peněžní příspěvek od státu, který zajišťuje také dovoz jídla a vody z nezamořených oblastí. Do druhé, tzv. mrtvé zóny mají přístup jen vědci, pracovníci elektrárny a exkurze.

Dlouhodobé vlivy na civilisty[editovat | editovat zdroj]

Vstup do opuštěné zóny

Výsledky studií, hlavně udávané počty postižených, se velmi liší podle toho, která organizace je vypracovala. Na nejoptimističtějším kraji spektra se nacházejí zprávy vydávané MAAE. S mírným odstupem následuje WHO, a dále UNSCEAR (komise OSN pro studium efektů radiace), které uvádějí větší počty postižených, ale zůstávají řádově stejné. I řádově vyšší počty postižených uvádějí studie postsovětských výzkumníků, studie německé sekce organizace lékařů pro zamezení jaderné válce (IPPNW) a německé společnosti pro radiační ochranu (GfS)[26], a studie vypracované pro stranu Zelených, či Greenpeace.

První studie: nejméně 30 000 zemře[editovat | editovat zdroj]

Zpráva SSSR (Legasov, 1986)[27] vypracovaná pro Vídeňskou mezinárodní konferenci v srpnu 1986 odhaduje počet lidí, kteří zemřou rakovinou způsobenou izotopy radiocesia na 30 000 až 40 000. MAAE označila předpověď za extrémně nadhodnocenou a stanovila max. počet na 25 000, pak na 10 000 a 5 100. Autor studie, profesor Valerij Legasov, byl nalezen oběšený 27. dubna 1988.

11 let poté: chronické ukládání Cs-137[editovat | editovat zdroj]

V roce 1997 tým profesora Juryje Bandažeuského, patologa a ředitele zdravotního centra v běloruském kraji Homel, studoval aktivitu radiocesia v tělech zemřelých osob, a jejich potravě z této zemědělské oblasti. Hlavní poznatky ze studie jsou[28]:

  • Koncentrace radiocesia v místní zelenině, mléku, a zejména lesních plodech roste, a jejich konzumenti jsou těžce zamoření.
  • Děti do 6 měsíců jsou nejpostiženější, aktivita radiocesia je až 11 000 Bq/kg ve slinivce, 6 250 Bq/kg ve štítné žláze, v srdci 5 333 Bq/kg. Účinným transportním prostředkem pro radiocesium je mateřské mléko. Děti zemřely na: sepsi, degeneraci mozku, hnisavé krvácení, poruchu srdce, tedy nikoliv na rakovinu.
  • V tělech 51 dětí do 10 let věku nalezli 2 až 3krát větší koncentrace radiocesia než u dospělých. Nejvyšší úrovně byly ve štítné žláze (2 054 Bq/kg), nadledvinách (1 576 Bq/kg), slinivce (1 359 Bq/kg).

Vzorky byly měřeny ukrajinskými a německými přístroji, pro kontrolu byly vzorky dvakrát přeměřeny ve Francii.

Studie konstatuje, že dříve byly školní děti posílány jednou ročně na měsíční ozdravný pobyt ze zasažené zóny, a ve školní jídelně dostávaly zdarma nekontaminované jídlo. Z úsporných důvodů byl pobyt v sanatoriu zkrácen a některé kontaminované oblasti prohlášeny za „čisté“, což ukončilo dodávku dekontaminované školní stravy. Studie požadovala pokračování jelikož kontaminovaná zemědělská půda začala být obdělávána, čímž se radiocesium dostalo do oběhu.

Studie byla publikována v roce 2003, době kdy byl profesor Bandaževský ve výkonu osmiletého trestu za údajné přijetí úplatku. Po čtyřech letech mezinárodních protestů a petic byl propuštěn.

20 let poté: 9 000 až 60 000 zemře[editovat | editovat zdroj]

V roce 2005 bylo v studii MAAE množství lidí, kteří zemřou na rakovinu způsobenou katastrofou, odhadováno na 9 000 až 10 000.[29]

„Jiná zpráva o Černobylu“ (Fairlie, Sumner, 2006)[30] odhaduje množství lidí, kteří v budoucnu zemřou na rakovinu způsobenou katastrofou, na 30 000 až 60 000. MAAE se zabývá pouze populací tří států (Bělorusko, Ukrajina, Rusko), zatímco dle této zprávy více než polovina radioaktivního spadu skončila na nesovětských územích Evropy. Avšak podle jiných zpráv přibližně 60 % radioaktivního spadu skončilo v Bělorusku.

Ukrajinské úřady například uváděly po roce 2000, že v souvislosti s výbuchem zemřelo přes 125 tisíc lidí. Hnutí Greenpeace zase spočítalo, že na následky nemocí, způsobených výbuchem elektrárny v Černobylu, zemřelo nebo v budoucnosti zemře na 200 tisíc lidí. (Český rozhlas; 2016)

Stigmatizace mladých[editovat | editovat zdroj]

Vedoucí zdravotní komise MAAE Fred Mettler roku 2006 předložil psychologický dopad havárie. V eseji píše, že mnoho adolescentů a mladých dospělých ze zasažených oblastí trpí stresovými symptomy, depresemi, strachem, pocity bezmoci, slabosti a ztrátou životních vyhlídek. Jelikož se o nich referuje jako o obětech, a nikoliv jako o přeživších, vede to buď k přehnaným obavám o jejich zdraví a sebepozorování, či k nezodpovědnému chování. Příklady jsou: konzumace lesních plodů z vysoce zamořených oblastí, nadužívání alkoholu a tabáku, nechráněná promiskuitní pohlavní aktivita.[31]

2007: indikováno 985 000 obětí[editovat | editovat zdroj]

Akademie věd v New Yorku vydala v roce 2009 anglický překlad[4] velmi obsáhlé studie[32] publikované v roce 2007, jejíž zásadní výpovědí je, že do roku 2004 na následky havárie zemřelo již 985 000 lidí, z toho 170 000 v Severní Americe. Jen v Bělorusku se mezi lety 1990 a 2004 zvýšila celková úmrtnost o 43 %. Zvýšení úmrtnosti je ale i důsledkem prudkého zhoršení životní úrovně a životních podmínek v Bělorusku po rozpadu Sovětského svazu. To samé platí i o Ukrajině a Rusku. Tyto dvě věci – vliv radiace a pokles životní úrovně – však žádná studie nerozlišuje. Zcela běžné jsou dnes i předtím spíše výjimečné projevy nedostatečné výživy a podvýživy.

Autoři V. Jablokov (ruská akademie věd), A. Nesterenko (běloruský institut radiační bezpečnosti), Prof. V. Nesterenko (bývalý ředitel běloruského jaderného střediska) měli za podklad více než 1 000 vědeckých titulů a 5 000 jiných publikací týkající se havárie a lékařských záznamů. Autoři upozornili, že tyto vědecké zdroje byly MAAE a UNSCEAR ignorovány či zlehčovány.

V analyzovaných materiálech byl u lidí v důsledku radioaktivního spadu zjištěn nárůst výskytu rakoviny (zejména rakoviny štítné žlázy a leukémie) a jiných onemocnění. Je třeba připomenout, že zaznamenaný zvýšený výskyt zhoubných i nezhoubných forem rakoviny je zčásti i důsledkem jejich cíleného vyhledávání v zasažené populaci – před havárií prostě zůstávalo značné procento nemocných bez zdravotních potíží neodhaleno.

Elektrárna po havárii[editovat | editovat zdroj]

Problémy samotné elektrárny katastrofou ve 4. reaktoru neskončily. Ukrajinská vláda ponechala kvůli nedostatku elektřiny v zemi tři zbývající reaktory v provozu. V roce 1991 poškodil požár kabelové vedení reaktoru číslo 2 a odpovědní činitelé prohlásili, že je neopravitelně poškozen a odpojili ho. Reaktor číslo 1 byl odstaven v listopadu 1996 jako část dohody mezi ukrajinskou vládou a mezinárodními organizacemi jako je MAAE o ukončení činnosti elektrárny. V listopadu 2000 ukrajinský prezident Leonid Kučma během slavnostního zakončení provozu osobně zmáčkl vypínač 3. reaktoru a odstavil tím definitivně celou elektrárnu.

Potřeba budoucích oprav[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Sarkofág černobylské jaderné elektrárny.
Sarkofág čtvrtého reaktoru

Sarkofág postavený v roce 1986 nedokáže trvale účinně uzavřít zničený čtvrtý reaktor. Jeho chvatná konstrukce, v mnoha případech prováděná na dálku průmyslovými roboty, má za následek jeho rychlé stárnutí a pokud by se zhroutil, mohl by se uvolnit další mrak radioaktivního prachu.

Pod sarkofágem zůstalo po havárii asi 95 % paliva reaktoru, což představuje radioaktivitu asi 18 MCi = 0,67 EBq. Radioaktivní materiál se skládá ze zbytků jádra reaktoru, prachu a lávě podobných „palivo obsahujících materiálů“ (FCM), které ztuhly do keramické formy. V reaktoru byl popsán i nový nerost – černobylit.[33] Podle střízlivých odhadů se pod železobetonovým obalem nachází také nejméně 4 tuny radioaktivního prachu. Do betonu pokrývajícího reaktor prosakuje voda a vyplavuje radioaktivní materiály do okolních podzemních vod. Vysoká vlhkost uvnitř krytu přispívá k další erozi jeho ocelové konstrukce a následnému úniku radioaktivity.

Bylo diskutováno mnoho plánů na výstavbu nového krytu, jejich realizaci však dlouho brzdila korupce. Velká část peněz věnovaných zahraničními zeměmi na pomoc Ukrajině byla vyplýtvána neefektivním rozvržením stavebních smluv a celkovým řízením nebo zpronevěřena.

Nový kryt[editovat | editovat zdroj]

Nový kryt v dubnu 2015

V roce 2010 zahájila Evropská banka pro rekonstrukci a rozvoj projekt „Úkryt“ – stavbu nového sarkofágu, na který přispívá 28 evropských zemí.[34] Funkce nového dvouplášťového krytu má být zamezení úniku radioaktivních látek do okolí, ochrana starého sarkofágu před povětrnostními vlivy a možnost jeho budoucího robotického rozebrání;[35] konstrukce však plně nenahrazuje funkci železobetonového kontejnmentu.

Příspěvek Ukrajiny byl zpočátku paradoxně tak malý, že neměla mezi ostatními ani hlasovací právo, později jej však navýšila a stala se plnoprávným účastníkem. Celý projekt má přijít na 1,55 miliard eur. Podle současného modelu bude projekt financovat z větší části právě ukrajinská vláda, zbytek dobrovolní přispěvatelé (mezinárodní organizace) prostřednictvím Evropské banky pro rekonstrukci a rozvoj.[36] Práce byly zahájeny v září 2010. Přestože nebyla k dispozici celá částka, pracovalo se na jaře 2011 na stavbě základů nového sarkofágu.

Nový kryt je oblouková konstrukce profilu obrácené řetězovky vysoká 105 metrů, dlouhá 150 metrů a široká 260 metrů, která byla vybudována mimo areál, v listopadu 2016 přesunuta nad stávající sarkofág. Sarkofág byl definitivně zakryt novou konstrukcí v listopadu 2016.[37]

Porovnání s jinými katastrofami[editovat | editovat zdroj]

7 — Velmi těžká havárie
6 — Těžká havárie
5 — Havárie s rizikem vně zařízení
4 — Havárie bez vážnějšího rizika
3 — Vážná nehoda
2 — Nehoda
1 — Anomálie
0 — Odchylka

Černobylská havárie byla ojedinělou událostí. Poprvé v historii komerční výroby elektrické energie z jádra nastala při havárii úmrtí přímo způsobená radiací. Pozdější havárie v přepracovacím závodě v japonské Tokaimuře 30. září 1999 vyústila ve smrt jednoho pracovníka na ozáření až 22. prosince téhož roku. Havárie elektrárny A1Jaslovských Bohunicích v roce 1976 měla sice dvě oběti, ale ty byly udušeny uniklým oxidem uhličitým, nikoliv radioaktivitou. Při druhé havárii ovšem k určitému úniku radioaktivity došlo.

Počtem mrtvých je tato havárie srovnatelná s některými haváriemi přehrad. V Evropě bylo největší havárií přehrady zabito přibližně 2 000 lidí vlnou vzniklou po sesuvu půdy do přehrady Vajont v Itálii 9. října 1963. Největší neštěstí se odehrálo v Číně v roce 1975 na řece Jang-c', kde po protržení několika hrází zahynulo během jednoho dne 80 000–200 000 lidí (přesná čísla byla čínskými úřady utajena).

Čínské přehrady mohou posloužit také pro porovnání počtu evakuovaných – jen kvůli stavbě přehrady Tři soutěsky bylo třeba přesídlit asi 700 000 lidí.

Srovnání lze provést i s výrobou elektřiny z uhlí: Každý rok zahynou ve světě při důlních haváriích desítky až stovky horníků. Před zavedením různých technologií na čištění dýmu kyselé deště a spad mírně radioaktivního popílku jen v Československu zničily tisíce čtverečních kilometrů lesů a zasáhly s účinkem nemocí a dřívější smrti statisíce lidí.

Odkazy[editovat | editovat zdroj]

Poznámky[editovat | editovat zdroj]

  1. Regulační tyče se skládaly ze dvou částí: horní část (absorbér) byla vyrobena z bóru, který velmi účinně pohlcuje neutrony. Dolní část (vytěsnitel) byla z grafitu, který ovšem pohlcuje mnohem méně neutronů než voda, která je při zasouvání tyče vytlačena z kanálku. Proto v okamžiku zasunutí zcela vysunuté regulační tyče došlo nejprve ke zvýšení výkonu ve spodní části reaktoru.[14]

Reference[editovat | editovat zdroj]

  1. Accident de Tchernobyl : déplacement du nuage radioactif au dessus de l'Europe entre le 26 avril et le 10 mai 1986. IRSN - Institut de Radioprotection et de Sûreté Nucléaire [online]. [cit. 2018-06-16]. Animace šíření Cs-137. Dostupné online. (francouzsky) 
  2. a b The Human Consequences of the Chernobyl Nuclear Accident [PDF]. UNDP a UNICEF, 22.01.2002 [cit. 2018-05-05]. S. 66 (PDF 69). Table 5.3: Evacuated and resettled people. Dostupné online. (anglicky) 
  3. Mould 2000, s. 29.
  4. a b Yablokov, Nesterenko, Nesterenko: Chernobyl: Consequences of the Catastrophe for People and the Environment. 2009. New York. https://archive.org/details/YablokovChernobylBook_201603
  5. DRÁBOVÁ, Dana. Jaderná energetika před černobylskou havárií a po ní. Vesmír. 2006-03-16. Dostupné online [cit. 2018-06-16]. 
  6. Mould 2000, s. 15.
  7. a b c d e Kolektiv autorů. 10 let od havárie jaderného reaktoru v Černobylu – důsledky a poučení. Praha: Státní úřad pro jadernou bezpečnost, 1996. 39 s. Dostupné online. 
  8. Mould 2000, s. 14.
  9. Mould 2000, s. 35.
  10. a b c d Mould 2000, s. 36.
  11. Mould 2000, s. 37.
  12. a b Mould 2000, s. 38.
  13. ĎATLOV, Anatolij Stěpanovič. Чернобыль. Как это было. [s.l.]: [s.n.], 1995. Dostupné online. Dostupné také na: [1]. Kapitola 4. (rusky) 
  14. LÁZŇOVSKÝ, Matouš. Proč Sověti stavěli černobylské reaktory a v čem byla chyba. iDNES.cz [online]. 2016-04-26 [cit. 2018-06-17]. Dostupné online. 
  15. Otázka dne: Došlo v Černobylu k jadernému výbuchu?. iDNES.cz [online]. 2016-05-23 [cit. 2018-06-16]. Dostupné online. 
  16. Informationskreis KernEnergie (Hrsg.): Der Reaktorunfall in Tschernobyl. 4. Auflage. Hermann Schlesener KG, Berlin 2007, ISBN 978-3-926956-48-4, (PDF), s. 14 (německy)
  17. The Chernobyl accident : updating of INSAG-1 : INSAG-7 : a report by the International Nuclear Safety Advisory Group [PDF]. Vídeň: 1992 [cit. 2018-02-26]. S. 24-25 (PDF 34-35). Dostupné online. (anglicky) 
  18. Chernobyl Officials Are Sentenced to Labor Camp. The New York Times. July 30, 1987. Dostupné online [cit. 2018-06-16]. (anglicky) 
  19. S obviněním mně sděleným nesouhlasím - Rozhovor s V. P. Brjuchanovem. www.pavrda.cz [online]. [cit. 2018-06-16]. Dostupné online. 
  20. LATYSHEVA, Marina. Chernobyl: The State Secret. Russian Life [online]. [cit. 2018-06-16]. Dostupné online. (anglicky) 
  21. SWEET, William. Chernobyl’s Stressful After-Effects. IEEE Spectrum: Technology, Engineering, and Science News. 1.11.1999. Dostupné online [cit. 2018-05-06]. (anglicky) 
  22. Mould 2000, s. 48.
  23. PAZDERA, Josef. Ekosystémy v Černobylu jsou pozoruhodně „zdravé“. www.osel.cz. 12.08.2005. Dostupné online [cit. 2018-06-16]. 
  24. MIHULKA, Stanislav. Černobylský přírodní park. www.osel.cz. 30.04.2006. Dostupné online [cit. 2018-06-16]. 
  25. TŮMA, Martin. Dřímající nebezpečí v Černobylu. www.osel.cz. 05.03.2015. Dostupné online [cit. 2018-06-16]. 
  26. Deutsche Sektion der Internationalen Ärzte für die Verhütung des Atomkrieges, Ärzte in sozialer Verantwortung e.V. (IPPNW); Gesellschaft für Strahlenschutz. Gesundheitliche Folgen von Tschernobyl. [s.l.]: [s.n.], April 2006. Dostupné online. (německy) 
  27. Citováno dle: BELBÉOCH, Bella. Responsabilités occidentales dans les conséquences sanitaires de la catastrophe de Tchernobyl, en Ukraine, Biélorussie et Russie. In: Ivo Rens, Joel Jakubec. Radioprotection et droit nucleaire. [s.l.]: Georg éditeur, 1998. Dostupné online.
  28. Y. I. Bandazhevsky: Chronic Cs-137 incorporation in children’s organs. Swiss Medical Weekly 2003;133:488–490. Dostupné online
  29. IAEA, E. CARDIS: CANCER EFFECTS OF THECHERNOBYL ACCIDENT. In: International Conference on Chernobyl: Looking Back to go Forward. 2005. Vídeň. s. 78., http://www-pub.iaea.org/MTCD/publications/PDF/Pub1312_web.pdf
  30. Fairlie, Sumner: The Other Report On Chernobyl. 2006. Berlin, Brussel, Kiev, http://www.chernobylreport.org/torch.pdf
  31. METTLER, Fred. IAEA Bulletin Volume 47, No. 2 – Chernobyl's Living Legacy [online]. Iaea.org [cit. 2018-03-24]. Dostupné online. (anglicky) 
  32. Яблоков А. В., Нестеренко В. Б., Нестеренко А. В.: Чернобыль: последствия катастрофы для человека и природы, Издательство Наука, СПб, 2007. https://www.yabloko.ru/node/28142
  33. Pazukhin E. M. 1994. Fuel-containing lavas of the Chernobyl NPP fourth block: topography, physicochemical properties, and formation scenario. Radiochemistry. číslo 36. Ss. 109–154. (anglicky)
  34. Kolem Černobylu bude postaven nový sarkofág
  35. Nový kryt havarovaného černobylského reaktoru se blíží k dokončení, 2. prosinec 2014
  36. Ukrajina získala hlasovací právo v projektu nového krytu pro JE Černobyl
  37. Černobyl dostal nový kryt. Sarkofág má vydržet 100 let, vešla by se do něj i socha Svobody, Aktualne.cz, 29. 11. 2016

Literatura[editovat | editovat zdroj]

  • MOULD, R. F. Chernobyl Record. Bristol, Philadelphia: Institute of Physics Publishing, 2000. 420 s. Google Books. ISBN 0-7503-0670-X. (anglicky) 

Externí odkazy[editovat | editovat zdroj]

Internetové stránky
Fotografie a videa