Virus

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Tento článek pojednává o organismech. O počítačových virech pojednává článek počítačový virus.

Wikipedie:Jak číst taxobox Viry

Megavirus
Vědecká klasifikace
(nezařazeno) Nebuněčné organismy
(Acytota, syn. Aphanobionta)[1]
(nezařazeno) Vira (syn. Virae)[1]
skupiny

Virus (z lat. „virus“ – jed) je drobný vnitrobuněčný cizopasník[pozn. 1] nacházející se na pomezí mezi živým a neživým. Patří mezi tzv. nebuněčné organismy a svou stavbou se od buněk dramaticky liší. „Tělo“ virů je tvořeno tzv. virovou částicí, která je složena především z bílkovin a nukleových kyselin. Pro viry je charakteristické, že nerostou, nedělí se a ani nejsou schopné vyrábět (bez cizí pomoci) energii či vytvářet vlastní bílkoviny. Obvykle jsou také mnohem menší, než třeba bakteriální buňky, nemluvě třeba o lidských buňkách.[2]

Ty nejprimitivnější viry obsahují pouze svoji genetickou informaci ve formě DNA nebo RNA, které jsou uloženy v kapsidě. Ty složitější mohou navíc na povrchu obsahovat obalovou membránu pocházející z napadené buňky. V kapsidě mnohých virů mohou také být různé enzymy (s různou funkcí).

Je známo přes 2800 druhů virů.[3] Dosud neznámých virů může být řádově více — podle odhadů jen savci hostí statisíce druhů virů.[4] Některé viry nesou přízvisko -fág a předponu podle organismu, který napadají. Jedná-li se o bakterie, nazývají se bakteriofágové, viry napadající sinice se nazývají cyanofágové a recentně byly objeveny i viry napadající velké viry, tzv. virofágové. Některé viry napadají člověka a mohou způsobovat onemocnění. Žádné virové onemocnění nelze léčit antibiotiky. Důvodem podávání antibiotik u těchto onemocnění je předcházení následných takzvaných „superinfekcí“, tedy infekcí způsobených bakteriemi, které s odstupem několika dní napadnou předchozím virovým onemocněním oslabený organismus.

Historie výzkumu[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Virologie.
Dmitrij Ivanovskij (zde na sovětské známce) stál u samotného objevu virů

Slovo „virus“ původně znamenalo „jed“, nicméně v pozdní fázi 19. století se stalo synonymem pro termín „mikrob“. Postupně se ukazovalo, že některé mikroorganismy jsou poněkud zvláštní v tom, že se nezachytí na mikrobiologickém sítu tak, jako to dělají bakterie. Naopak, tyto mikroby procházely sítem a filtrát byl stále infekční. Postupně se objevovaly další a další příklady takových mikroorganismů a v roce 1928 vyšlo kompendium všech známých virů, nazvané Filterable Viruses, tedy „filtrovatelné viry“. Až postupně byl přívlastek „filtrovatelné“ vypuštěn a slovo virus získalo jednoznačný význam – takový, jak ho chápeme dnes.[5]

Až do konce devatenáctého století byly infekce přisuzovány vesměs bakteriím a o existenci něčeho menšího se nevědělo. Skutečný průlom nastal až v roce 1892, kdy ruský botanik Dmitrij Ivanovskij provedl slavný pokus s extrakty z tabáku napadeného tzv. tabákovou mozaikou. Když tento extrakt přecedil přes síto, jímž žádné bakterie neprojdou, filtrát byl stále infekční. Sám Ivanovskij příčinu tohoto jevu neodhalil a stále hledal původce tabákové mozaiky mezi bakteriemi.[6] Roku 1898 pokus zopakoval Martinus Beijerinck. Ten popsal infekční částice jako tzv. contagium vivum fluidum (z lat.,„nakažlivá živoucí tekutina“).[7] Brzy byla objevena celá řada virů zodpovědných za různá onemocnění. Prvním objeveným virem napadajícím živočichy byl virus slintavky a kulhavky (1898), prvním objeveným lidským virem byl v roce 1900 virus žluté zimnice. V roce 1911 objevil Peyton Rous první virus způsobující nádorové bujení (tzv. Rousův sarkom).[8] V prvních etapách dvacátého století však stále nebylo jasno, co vlastně jsou viry zač – tyto dohady vyřešil až d'Herelleho plakový test (1917) a především první elektronmikroskopický snímek virů (1939).[6] V první polovině dvacátého století také bylo prokázáno, že se viry skládají z proteinů a nukleových kyselin. Od 60. let 20. století vědci začali používat viry jako modelové organismy ke studiu obecných procesů, které následně bylo možno zobecnit na všechen pozemský život – zejména v souvislosti s rozvojem genového inženýrství. Dochází k rozvoji poznatků o roli virů ve vzniku rakoviny či třeba k vývoji nových vakcín proti virovým onemocněním. Velkou výzvou pro virology byl, a stále je, virus HIV.[6]

Na pomezí života[editovat | editovat zdroj]

Viry jsou někdy označovány za struktury „na pomezí života“.[9][10] Některé vlastnosti virů nápadně připomínají rysy živých organismů: předně obsahují genetickou informaci uloženou v sekvenci nukleových kyselin a jsou schopné se vyvíjet a přizpůsobovat podmínkám prostředí.[11] Přesto však nemohou vykonávat celou řadu biologických procesů a musí k tomu využívat služby hostitelských buněk. Nejsou schopny samy růst, dělit se či množit, ani si metabolicky opatřovat a ukládat energii nebo vyrábět vlastní bílkoviny.[2] Mezi jednotlivými viry existují nicméně značné rozdíly a některé (např. Mimivirus) dokonce nesou geny pro výrobu svých bílkovin.[10] Ani takto komplexní viry však nejsou schopné replikace (rozmnožování) bez hostitelské buňky. Viry je proto možné je metaforicky označit za „jmelí na stromu života“.[11]

Stavba[editovat | editovat zdroj]

Tři různé typy virů: v levé části virus infikující bakterie neboli bakteriofág, vpravo nahoře průřez neobaleným virem s ikosaedrální symetrií, vpravo dole průřez retrovirem HIV, u kterého je virová částice ještě obalena membránou s povrchovými glykoproteiny. Genomová nukleová kyselina je vždy znázorněna modře

Virová částice (virion) je komplex bílkovin a nukleových kyselin, který virům umožňuje šířit se mezi hostitelskými buňkami a mezi jedinci. Je poměrně obtížné charakterizovat stavbu virové částice obecně. Viry se vzájemně velmi odlišují už svou velikostí: průměr virové částice jen u klinicky významných virů sahá od pouhých 16-18 nm (parvoviry, circoviry) až po 300 nm u poxvirů.[12][13] V poslední době jsou popisovány ještě větší virové částice: první z těchto obřích virů Mimivirus dosahuje velikosti až 750 nm.[14] V roce 2013 a 2014 byly objeveny ještě větší viry – pandoraviry a pithoviry – s kapsidou o délce 1000 a 1500 nm.[15] To znamená, že zatímco nejmenší viriony připomínají svou velikostí ribozom,[16] obří viry jsou větší než nejmenší bakterie.

Virová částice se skládá z bílkovinného pouzdra (tzv. kapsidy) a nukleové kyseliny (virového genomu). Některé virové částice navíc obsahují ještě vnější membránový obal.

Kapsida[editovat | editovat zdroj]

Podrobnější informace naleznete v článku kapsida.

Kapsida je bílkovinný plášť, které obklopuje virovou nukleovou kyselinu (DNA nebo RNA). Je složena z jednotlivých molekul proteinů, které se (často samy, bez pomoci jiných proteinů) spojují do trojrozměrného dutého útvaru. Takový útvar chrání nukleovou kyselinu (či případně i některé enzymy) nacházející se uvnitř kapsidy. Mimoto často zprostředkovává vazbu na povrchové receptory buněk hostitele a plní i celou řadu dalších doplňkových rolí.[11]

Kapsida má nejčastěji tzv. ikosaedrální nebo helikální tvar:

  • Ikosaedrální kapsida – má ji např. virus dětské obrny nebo herpetické viry. Ikosaedr je česky dvacetistěn, což poměrně přesně vystihuje základní strukturu virů s tímto typem kapsid. Z hlediska geometrie je dvacetistěn trojrozměrné těleso v prostoru, jehož stěny tvoří dvacet stejných rovnostranných trojúhelníků. Virus musí celý tento útvar vystavět z proteinů. Bude-li umístěn jeden virový protein do každého rohu všech trojúhelníků, vychází minimální požadavek na 60 kapsidových proteinů. Jsou možné i násobky čísla 60, ty jsou pro každý druh viru charakteristické a udává je tzv. triangulační číslo.[6]
  • Helikální kapsida – má ji např. virus chřipky nebo virus tabákové mozaiky. Má zpravidla válcovitý až vláknitý tvar a je tedy zorientována podél jediné, podélné osy. Vzniká šroubovicovitým kladením kapsidových proteinů kolem dokola s pozvolným stoupáním. Pro helikální kapsidy je typické, že se na ně nukleová kyselina zevnitř váže a stáčí, čímž poměrně věrně kopíruje jejich šroubovicovité uspořádání.[6]

Genetický materiál[editovat | editovat zdroj]

Všechny virové částice však musí obsahovat dědičnou výbavu viru – virový genom. Ten obsahuje od pouhých několika genů (virus tabákové mozaiky má pouhé 3 geny) až po několik tisíc (genom mimiviru obsahuje asi 1262 genů,[17] tj. dvakrát více než nejjednodušší bakterie).[pozn. 2] Virové geny a jimi kódované proteiny většinou rozdělujeme na strukturální, tj. takové, které tvoří součást infekční virové částice (virionu) a nestrukturální – tj. většinou enzymy zodpovědné za replikaci viru a za přeprogramování hostitelské buňky pro potřeby viru. Jindy jsou rovněž geny rozdělovány na rané (early) a pozdní (late) podle toho, jak dlouho po infekci hostitelské buňky začne jejich exprese.

Obal[editovat | editovat zdroj]

Podrobnější informace naleznete v článku virový obal.

Některé viry jsou kromě kapsidy ještě obaleny polopropustnou membránou – např. viry chřipky nebo HIV.

Klasifikace[editovat | editovat zdroj]

Klasifikace a názvosloví virů je – s ohledem na obrovskou rozmanitost a proměnlivost virů – poněkud kontroverzní a složité téma. Je však velmi důležité, aby byly vypracovány nějaké klasifikační systémy. Virů bylo popsáno značné množství a bez nějaké promyšlené klasifikace se velmi těžko zpracovávají např. internetové virové databáze. Důležitým orgánem činným v tomto procesu je International Committee on Taxonomy of Viruses („Mezinárodní komise pro klasifikaci virů“, ICTV), který se tomuto úkolu věnuje již od roku 1966 a pravidelně aktualizuje klasifikaci virů.[20]

Baltimorova klasifikace[editovat | editovat zdroj]

V praxi se často používá tzv. Baltimorova klasifikace, která dělí viry do sedmi skupin (někdy nazývaných třídy):[21]

Genom virů může být lineární či cirkulární a segmentovaný či celistvý. ssRNA viry můžou mít zápornou nebo kladnou polaritu.

Systém ICTV[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Klasifikace virů.

ICTV prosazuje systém založený na virových druzích, rodech, čeledích a dokonce i řádech. V aktualizaci deváté zprávy (z roku 2013) uvádí ICTV 2828 druhů virů ve 455 rodech, 103 čeledích a 7 řádech.[22]

Rozmnožování[editovat | editovat zdroj]

Rozmnožování virů probíhá tzv. replikací. Ta má obecně 4 fáze, rostlinné viry však zpravidla první a druhou fázi vynechávají kvůli buněčné stěně rostlinných buněk, šíří se prostřednictvím plasmodesmat

  • Adsorpce – navázání viru na buňku
    • Jde o specifický proces, je nutná přítomnost receptoru na povrchu buňky a ligandu na povrchu viru
  • Penetrace – proniknutí viru do buňky
    • Endocytóza – využívá se vezikulární transport buňky, ta vir přenese do časného endozomu a odtud vir pokračuje do jiných částí buňky
    • Fúze – obalený vir nese protein, který mu dovolí sfúzovat s membránou hostitelské buňky; tyto proteiny lze využít v manipulaci s buňkami; kdysi gen pro tento protein od virů, pravděpodobně retrovirů, získal prasavec, což umožnilo vznik placenty a evoluci naším směrem
  • Eklipsa – vlastní replikace
    • Uvolnění nukleové kyseliny z kapsidy
    • Replikace virové nukleové kyseliny
    • Syntéza virových bílkovin
  • Maturace – dokončení replikace
    • Autoagregace (někdy jsou potřeba enzymy) kapsomer v kapsid
    • U obalených virů dochází k obalení membránou
    • Uvolnění viru z buňky
  • Pokud není žádná fáze přerušena, nazývá se rozmnožovací cyklus jako lytický.
  • Pokud není žádná fáze přerušena, ale virus místo zabití buňky uvolňuje virové partikule v malém množství, nazývá se virová infekce jako latentní.
  • Pokud je během fáze eklipsy virový genom začleněn do hostitelského genomu, mluví se o perezistenci. Z viru se stává provirus a čeká na podnět k opětovné aktivaci.
  • Pokud je během fáze eklipsy virový genom začleněn do hostitelského genom a ten tak získá novou vlastnost (nádorové bujení,...), mluví se o virogenii. Toho se využívá v genetickém inženýrství.

Každý vir je víceméně unikátní a popis detailních rozmnožovacích strategií je nad rámec této stránky.

Virové onemocnění[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Virové onemocnění.

Viry jsou tzv. obligátní cizopasníci, žádný virus není schopen žít bez svého hostitele. Hostitelem může být v podstatě jakýkoliv organismus: např. bakterie (příslušné viry se nazývají bakteriofágy, příp. u sinic cyanofágy), rostlinné buňky (tzv. fytoviry), buňky hub (mykoviry) a samozřejmě také živočišné buňky (zooviry). Ne každá infekce virem musí způsobit onemocnění, mnohdy je průběh bez jakýchkoliv pozorovatelných příznaků.[23][24] Celá řada virů však způsobuje vážná onemocnění: virová onemocnění dolních cest dýchacích (chřipka), AIDS, virem způsobené průjmy, ale i spalničky jsou na čelních místech ve statistikách úmrtnosti lidí na infekční onemocnění.[25] Mnohé způsobují obrovské ekonomické ztráty v zemědělství (namátkou virus Tungro zničí za jeden rok úrodu rýže za 1,5 mld. dolarů, dle Hull and Davies (1992)[26]). Konkrétní projevy nemocí se silně odvíjí od typu virů a jejich hostitelů.

Lidské virózy[editovat | editovat zdroj]

K vzniku a propuknutí virózy nemoci přispívá celá řada faktorů, které se společně podílí na tzv. patogenezi. Ke vzniku onemocnění může dojít na místě infekce (tzv. lokální infekce), nebo v jiné tkáni, kam virus doputoval krví, mízou nebo nervovou tkání (tzv. generalizovaná infekce). Následně dochází k poškozování tkáně, a to buď přímým patogenním působením množícího se viru, nebo kvůli imunitní obraně, která útočí na virem napadenou tkáň.[27]

Imunitní reakce je přirozená obrana těla před cizorodými částicemi, v tomto případě viry. Vyvinulo se množství mechanismů, jimiž se lidské tělo brání virové infekci, a to jak v oblasti tzv. vrozené imunity, tak i v imunitě adaptivní. Na druhou stranu, viry si často vyvíjí způsoby, jak imunitní obranu přelstít či oklamat. Schopnost těla odolat virové infekci je dáno právě tím, kdo pomyslný „souboj“ vyhraje.[25]

Proti některým virózám je k dispozici účinná vakcína, proti některým virům byla vyvinuta léčiva specificky blokující některý virový enzym, tzv. virostatika. Množství léků však pouze potlačuje symptomy, ale samotnou příčinu onemocnění nevyřeší, hlavní boje totiž svádí imunitní systém hostitele. Na virová onemocnění však nemá žádný vliv léčba antibiotiky, přestože jsou někdy u virových onemocnění chybně nasazována.

Poznámky[editovat | editovat zdroj]

  1. Tzv. submikroskopický obligátně intracelulární parazit, tedy parazit, který není vidět pod světelným mikroskopem (obvykle) a ke svému životu nutně potřebuje osídlit vnitřní prostředí buněk
  2. Virem s dosud (2013) největším známým genomem je Pandoravirus salinus, který obsahuje 2,47 milionů párů bází a s velikostí 1 mikrometr je dokonce viditelný optickým mikroskopem.[18][19] V roce 2014 jej velikostí překonal pithovirus s délkou 1,5 mikrometru.[15]

Odkazy[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

  1. a b BioLib: Viry a viroidy
  2. a b CANN, Alan J.. Principles of Molecular Virology. 4. vyd. [s.l.] : Elsevier, 2005. ISBN 0-12-088787-8.  
  3. Mezinárodní výbor pro taxonomii virů (ICTV) uznal k červenci r. 2013 celkem 2828 druhů virů, řazených do 455 rodů, viz: ICTV – Virus Taxonomy Assignments, 2013. Dostupné online (anglicky)
  4. http://aktualne.centrum.cz/zahranici/amerika/clanek.phtml?id=789317 – Riziko pro lidi: Savci hostí statisíce neznámých virů
  5. FENNER, F. History of Virology: Vertebrate Viruses. In Mahy, Brian W. J.; Regenmortel, Marc H. V.. Encyclopedia of Virology. 3. vyd. [s. l.] : Elsevier, 2008. ISBN 978-0-12-373935-3.
  6. a b c d e KNIPE, David M.; HOWLEY, Peter M.. Fields Virology. 5. vyd. [s.l.] : Lippincott Williams & Wilkins, 2007.  
  7. HULL, R. History of Virology: Plant Viruses. In Mahy, Brian W. J.; Regenmortel, Marc H. V.. Encyclopedia of Virology. 3. vyd. [s. l.] : Elsevier, 2008. ISBN 978-0-12-373935-3.
  8. Schlesinger, S.; Schlesinger, M. J.. Viruses. In Schaechter, M. The Desk Encyclopedia of Microbiology. [s. l.] : Elsevier, 2004. ISBN 0-12-621361-5.
  9. RYBICKI, EP. The classification of organisms at the edge of life, or problems with virus systematics. S Afr J Sci. 1990, roč. 86, s. 182–186.  
  10. a b VILLARREAL, Luis P.. Are Viruses Alive?. Scientific American. prosinec 2004. Dostupné online.  
  11. a b c MAHY, Brian W J; VAN REGENMORTEL, Marc H V. Desk Encyclopedia of General Virology. [s.l.] : Elsevier, 2010. ISBN 978-0-12-375146-1.  
  12. MURRAY, Patrick R.; ROSENTHAL, Ken S.; PFALLER, Michael A.. Medical Microbiology, Fifth edition. [s.l.] : Elsevier, 2005.  
  13. MANKERTZ, Annette. Molecular Biology of Porcine Circoviruses. In Thomas C. Mettenleiter, Francisco Sobrino. Animal Viruses: Molecular Biology. [s. l.] : Caister Academic Press, 2008. ISBN 978-1-904455-22-6.
  14. XIAO, Chuan, Yurii G Kuznetsov, Siyang Sun, Susan L Hafenstein, Victor A Kostyuchenko, Paul R Chipman, Marie Suzan-Monti, Didier Raoult, Alexander McPherson, Michael G Rossmann Structural Studies of the Giant Mimivirus. PLoS Biology. 2009-04, roč. 7, čís. 4. ISSN 1544-9173. DOI:10.1371/journal.pbio.1000092.  
  15. a b Tvůrčí skupina popularizace vědy. Znovuoživení největšího viru všech dob [online]. Český rozhlas Plus, rev. 2014-13-04, [cit. 2014-03-03]. Dostupné online.  
  16. Diameter of ribosome [online]. Bionumbers. Dostupné online.  
  17. RAOULT, D.; AUDIC, S.; ROBERT, C., et al. The 1.2-megabase genome sequence of Mimivirus. Science.. 2004, roč. 306, čís. 5700, s. 1344-50. Dostupné online. ISSN 1095-9203.  
  18. PHILIPPE, Nadège, et al. Pandoraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes. Science [online]. , 19. červenec 2013, svazek 341, čís. 6143, s. 281-286. Dostupné online. ISSN 1095-9203. DOI:10.1126/science.1239181.  (anglicky) 
  19. MIHULKA, Stanislav: Mimiviry jsou out, teď vládnou pandoraviry! (popularizační článek k předchozí referenci). O.S.E.L., 20. červenec 2013. Dostupné online
  20. FAUQUET, C M. Taxonomy, Classification and Nomenclature of Viruses. In Mahy, Brian W. J.; Regenmortel, Marc H. V.. Encyclopedia of Virology. 3. vyd. [s. l.] : Elsevier, 2008. ISBN 978-0-12-373935-3.
  21. Oxford dictionary of biochemistry and molecular biology; revised edition. Příprava vydání A D Smith. [s.l.] : The General editors, 1997. ISBN 0-19-850673-2.  
  22. ICTV – Virus Taxonomy Assignments
  23. JARTTI, T.; JARTTI, L.; PELTOLA, V., et al. Identification of respiratory viruses in asymptomatic subjects: asymptomatic respiratory viral infections. Pediatr Infect Dis J.. 2008, roč. 27, čís. 12, s. 1103-7. Dostupné online. ISSN 0891-3668.  
  24. WEIFFENBACH, J.; BALD, R.; GLONING, K. P., et al. Serological and virological analysis of maternal and fetal blood samples in prenatal human parvovirus b19 infection. J Infect Dis.. 201, roč. 205, čís. 5, s. 782-8. Dostupné online. ISSN 1537-6613.  
  25. a b Richard A. Goldsby, Thomas J. Kindt, Barbara A. Osborne. Kuby Immunology. 6. vyd. [s.l.] : W.H. Freeman, 2007.  
  26. HULL, Roger. Comparative Plant Virology. 2. vyd. [s.l.] : Elsevier. ISBN 978-0-12-374154-7.  
  27. KAYSER, F. H. et al. Medical Microbiology. [s.l.] : Thieme, 2005.  

Literatura[editovat | editovat zdroj]

  • (česky) ROSYPAL, Stanislav. Bakteriologie a virologie. 1. vyd. Praha : [s.n.], 1994. ISBN 80-85827-16-6).  
  • (česky) BEDNÁŘ, Marek. Lékařská mikrobiologie : bakteriologie, virologie, parazitologie. 1. vyd. Praha : Marvil, 1996. ISBN 80-85827-16-6).  
  • (česky) KONVALINKA, Jan. Viry pro 21. století. 2. vyd. Praha : Academia, 2013. ISBN 978-80-200-2271-4).  
  • (anglicky) KNIPE, David M.; HOWLEY, Peter M.. Fields Virology. 5. vyd. [s.l.] : Lippincott Williams & Wilkins, 2007.  

Externí odkazy[editovat | editovat zdroj]

Logo Wikimedia Commons
Wikimedia Commons nabízí obrázky, zvuky či videa k tématu