Mnohostěn

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Příklad obecného mnohostěnu

Mnohostěn je trojrozměrné geometrické těleso, jehož povrch se skládá z konečně mnoha stěn tvořených mnohoúhelníky. V moderním smyslu se pojem mnohostěn užívá nejen pro těleso trojrozměrné, ale obecně pro těleso n-rozměrné (speciálním případem n-rozměrného mnohostěnu je n-rozměrný simplex).

Obecné vlastnosti[editovat | editovat zdroj]

Mnohostěn má povrch skládající se z mnohoúhelníkových stěn, které se setkávají v úsečkami tvořených hranách. Body, ve kterých se setkávají (nejméně 3) hrany, se nazývají vrcholy. Část prostoru ohraničená stěnami se nazývá vnitřek mnohostěnu a bývá obvykle považována za jeho součást.

Mnohostěny jsou označovány podle počtu stěn (4 a více). Máme tak např. čtyřstěn (tetraedr), pětistěn (pentaedr), šestistěn (hexaedr), sedmistěn (heptaedr), osmistěn (oktaedr), dvanáctistěn (dodekaedr), dvacetistěn (ikosaedr) atd. Pro některé důležité mnohostěny existuje také samostatné označení, např. jehlan, krychle apod.

Eulerova věta[editovat | editovat zdroj]

Vztah mezi počtem vrcholů (v), hran (h) a stěn (s) konvexního mnohostěnu udává tzv. Eulerova věta

v - h + s = 2.

Význačné mnohostěny[editovat | editovat zdroj]

Mnohostěn: a) konvexní, b) nekonvexní
Nepravidelný šestiboký jehlan
Nepravidelný čtyřboký hranol

Za význačné jsou považovány takové mnohostěny, které vynikají nad ostatní buď jistým druhem dokonalosti (například pravidelností) nebo svým historickým významem. Takovéto mnohostěny mají obvykle vlastní jména.

Pravidelné mnohostěny[editovat | editovat zdroj]

Jestliže z každého vrcholu mnohostěnu vychází stejný počet hran a každá stěna je ohraničena stejným počtem hran, pak se mnohostěn označuje jako kombinatoricky pravidelný. Jsou-li navíc všechny stěny pravidelné mnohoúhelníky, pak říkáme, že mnohostěn je (metricky) pravidelný.

Pravidelný mnohostěn je tedy takový mnohostěn, jehož všechny stěny jsou shodné pravidelné mnohoúhelníky.

Existuje přesně pět pravidelných konvexních mnohostěnů. Všechny jsou známy již z antiky a souhrnně se nazývají Platónská tělesa.

Tetrahedron.jpg Hexahedron.jpg Octahedron.jpg Dodecahedron.jpg Icosahedron.jpg

Existují přesně čtyři pravidelné nekonvexní mnohostěny. Souhrnně se nazývají Kepler-Poinsotova tělesa. Oproti klasické definici mnohostěnu neleží celá plocha každé stěny těchto těles na jejich povrchu, ale je „zanořena“ dovnitř. Pokud by se považovaly za stěny pouze viditelné části, nebyly by již tyto mnohostěny pravidelné.

Kepler-Poinsotova tělesa

Duální mnohostěny[editovat | editovat zdroj]

Dvanáctistěn a jeho duál

Ke každému mnohostěnu existuje mnohostěn duální. Ten vznikne umístěním vrcholů do „středů“ stěn původního mnohostěnu a jejich spojením hranami tak, že vrcholy ležící v sousedních stěnách původního mnohostěnu jsou v jeho duálu spojeny hranou.

Vztah ke grafům[editovat | editovat zdroj]

Každý mnohostěn se vztahuje k právě jednomu grafu, jehož vrcholy a hrany odpovídají vrcholům a hranám mnohostěnu. Díky tomu je možné používat teorii grafů pro zkoumání mnohostěnů.

Související články[editovat | editovat zdroj]