Krvetvorba

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Zjednodušené schéma krvetvorby
Krvetvorba v kostní dřeni (anglicky)

Krvetvorba (hematopoéza, hemopoéza, hemopoesa) je tvorba krevních buněčných komponent. Formované krevní elementy jsou diferencované a dále se již nedělí. Procesem krvetvorby se zajišťuje jejich neustálá obnova.[1][2]

Hematopoetické kmenové buňky[editovat | editovat zdroj]

Hematopoetické kmenové buňky obývají kostní dřeň a mají unikátní schopnost dát vzniku všem krevním elementům. Jsou to buňky schopné sebe-obnovy. To znamená, že když při dělení zůstávají některé dceřiné buňky kmenové, zatímco jiné se dále diferencují. Díky tomu nedochází k vyčerpání zásob kmenových buněk během obnovy krevních elementů. Tomuto fenoménu se říká asymetrická dělení.[3] Buňky, které dále diferencují, dávají vzniku specializovaným buněčným typům, které ztrácí schopnost sebe-obnovy. Důležité je zmínit, že zásoba hematopoetických kmenových buněk není homogenní populací. Můžeme je rozdělit na buňky, které jsou schopné se obnovovat dlouhodobě a buňky, které jsou schopné sebe-obnovy pouze krátkodobě. Obnova hematopoetických buněk je jedním z hlavních vitálních procesů v lidském těle.[4]

Všechny krevní buňky se dá rozdělit do hlavních tří linií:

  • Erytroidní linie, která zprostředkovává transport kyslíku do tkání a patří

sem Erytrocyty a Retikulocyty.

  • Lymfoidní linii, která je zásadní pro tvorbu adaptivní imunitní odpovědi.

Jejíž vývoj zahrnuje společného předka nazývaného společný lymfoidní progenitor. Patří se T-buňky, B-buňky a jejich blízcí příbuzní.

  • Myeloidní linie, která umožňuje vrozenou imunitní odpověď a podílí se na

odpovědi adaptivní. Jejíž vývoj zahrnuje společného předka nazývaného společný myeloidní progenitor. Patří sem Granulocyty a Makrofágy.

krve. Neboť jsou tyto buňky velmi často přesouvány mezi jednotlivými liniemi a doporučuji si vždy znovu najít současný pohled.[5]

Místa kde dochází ke krvetvorbě[editovat | editovat zdroj]

Ve vyvíjejícím se embryu, se krevní elementy vyvíjejí v krevních shlucích a ve žloutkovém váčku. Během probíhajícího vývoje, dochází k přesunu krvetvorby do sleziny, jater a lymfatických uzlin. Po vyvinutí kostní dřeně se sem přesune většina krvetvorby, ale poslední fáze vývoje jsou umístěny do sekundárních lymfatických orgánů, jako je brzlík, slezina či lymfatické uzliny. V raném dětství se většina krvetvorby odehrává v dlouhých kostech a během dospívání se přesouvá do plochých kostí a páteře.[6]

Extramedulární krvetvorba

Hematopoesis EN.svg

V některých případech je krvetvorba přesunuta do jater, brzlíku nebo sleziny. Děje se tak, pokud je z nějakých důvodů nemožné krvetvorbu realizovat v kostní dřeni.

Důsledkem extramedulární  krvetvorby dochází ke zvětšení těchto orgánů. Přirozenou formou extramedulární krvetvorby může být zvětšení jater během fetálního období, neboť ještě nedošlo k vývoji kostní dřeně.[7]

Ostatní obratlovci

Zvláště u nižších obratlovců dochází ke krvetvorbě v jiných místech, než je kostní dřeň. Místa krvetvorby sdílí některé vlastnosti a to jsou řídké vazivo a pomalý průtok krve. Například to jsou ledviny, slezina nebo střevo.[8]

Diferenciace krevních buněk[editovat | editovat zdroj]

Během diferenciace procházejí buňky postupnými změnami, které reflektují změny v transkripci. Dochází ke změně exprese povrchových proteinů, které jsou využívány pro detekci jednotlivých stádií vývoje. Vývoj je řízen růstovými a transkripčními faktory. Jako tížený produkt vystupuje plně diferenciovaná specializovaná buňka.

Determinace vývoje

Existují dva odlišné pohledy na věc. Pro kmenové buňky a nediferenciované krevní buňky je determinace vývoje vysvětlována Deterministickou teorií, která říká, že kolonie stimulující a další faktory ovlivňující determinaci, jako je specifická nika okolního prostředí, určují typ (směr) diferenciace krevních buněk. Toto je klasický pohled, ale existuje i jiná alternativní teorie, které se říká Stochastická. Ta říká, že nediferencované kmenové buňky se diferencují zcela náhodně, ale v průběhu vývoje jsou ovlivňovány mikroprostředím, v kterém se vyvíjí a růstovými faktory, které dávají buňkám signály nutné k přežití nebo je odsuzují k apoptóze. Pomocí takových signálu organizmus reguluje vývoj buněk, které jsou v daný okamžik potřeba.[9]

Hematopoetické růstové faktory

Vývoj červených a bílých krvinek je u zdravého člověka precizně regulován pomocí plejády růstových faktorů. Nejenom diferenciace, ale i schopnost sebe-obnovy kmenových

Diagram including some of the important cytokines that determine which type of blood cell will be created.[10] SCF= Stem Cell Factor Tpo= Thrombopoietin IL= Interleukin GM-CSF= Granulocyte Macrophage-colony stimulating factor Epo= Erythropoietin M-CSF= Macrophage-colony stimulating factor G-CSF= Granulocyte-colony stimulating factor SDF-1= Stromal cell-derived factor-1 FLT-3 ligand= FMS-like tyrosine kinase 3 ligand TNF-a = Tumour necrosis factor-alpha TGFβ = Transforming growth factor beta [11]

buněk je regulovaná růstovými faktory. Jedním z klíčových hráčů pro sebe-obnovu a udržování zásob kmenových buněk je stem cell factor (SCL). Nepřítomnost tohoto faktoru je letální.[12] Ale je zde veliká řada další glykoproteinových růstových faktorů, které ovlivňují proliferaci a maturaci, jako jsou například Interleuktiny IL-2,3,6,7. Tři další příklady, které stimulují produkci diferencovaných buněk, jsou faktory z rodiny colony-stimulating factors (CSF) a patří sem granulocyte-macrophage C

SF (GM-CSF), granulocyte CSF (G-CSF) a macrophage CSF (M-CSF). Stimulují granulopoézu a působí nejen na progenitorové buňky, ale i na diferencované buňky.[13]

Erytropoetin směřuje vývoj směrem k erytrocytům a trombopoetin naopak směřuje vývoj k megakaryocytům, které následně uvolňují fragmenty cytoplazmy, nazývané krevní destičky. Další příklady působení jednotlivých růstových faktorů jsou ukázány na obrázku.[14][15]

Transkripční faktory

Signalizace přes růstové faktory vede k aktivaci či de-represi transkripčních faktorů. Signál, který buňka obdrží, nemá digitální charakter. To znamená, že buňka je schopna rozlišit dobu, množství i frekvenci stimulů. Například dlouhodobá exprese transkripčního faktoru PU.1 vede k progresi směrem k myeloidní linii, zatímco přechodná exprese vede k vývoji nezralých eozinofilů.[16]

Prvním klíčovým hráčem v diferenciaci z kmenových buněk na multipotentní progenitory je transkripční faktor CCAAT-enhancer binding protein alfa (C/EBP alfa). Mutace v C/EBP alfa jsou asociované s akutní myeloidní leukémií.[17] Poté je nutné rozdělit diferenciaci do dvou základních větví. První z nich je společná erytrocytům a megakaryocytům a druhá vede k lymfoidním a myeloidním prekurzorům. Zde se objevují další dva velmi důležité transkripční faktory PU.1 a GATA-1. PU.1 směřuje vývoj směrem k erytrocytům a megakaryocytům a GATA-1 směrem k lymfoidním a myeloidním prekurzorům.[18]

Samozřejmě bychom mohli pokračovat výčtem transkripční faktorů jako je Ikaros, Gfi1 nebo IRF8. Ale raději bych zmínil dva fenomény. Stejné transkripční faktory se objevují vícekrát během ve vývoji. Například C/EBP alfa ve vývoji neutrofilů nebo PU.1 ve vývoji monocytů a dendritických buněk. Druhý fenoménem je, že vývoj není jednosměrný.

Jako příklad bych uvedl faktor PAX5. Je známo, že PAX5 hraje roli při vývoji B-buněk a že je asociovaný s lymfomy.[19] Ale bylo veliké překvapení, že pokud je v myši vyřazen tento transkripční faktor dochází k dediferenciaci periferních B-buněk. Toto zjištění velmi změnilo pohled na úlohu transkripčních faktorů v diferenciaci. Dnes můžeme na transkripční faktory pohlížet nejenom jako na iniciátory diferenciace, ale spíše jako na důležité faktory, které udržují stav diferenciace daného buněčného typu.[20]

Mutace v transkripčních faktorech jsou úzce spjaty s rakovinami krve, jako je akutní myeloidní leukémie nebo akutní lymfoidní leukémie. Například Ikaros, je znám jako regulátor mnohých biologických událostí. Myš, která nemá Ikaros má zablokován vývoj T i B-buněk a NK buněk.[21] Ikaros má 6 domén, které jsou nazývané zinkové prsty. Čtyři z nich jsou zodpovědné za vazbu na DNA a dvě za dimerizaci.[22] Zajímavé je, že vazba na různá specifická místa na DNA je zprostředkovaná různými zinkovými prsty, což má za následek pleiotropní působení tohoto faktoru. A tak mutace v různých doménách mají odlišný efekt na onemocnění. Ikaros je asociován především s pacienty, které mají BCR-Abl translokaci. V medicíně je používán jako znamení špatné prognózy.[23]

Erytropoéza, vznik červených krvinek[editovat | editovat zdroj]

Červené krvinky jsou neplnohodnotné buňky, postrádající jádro. Vznikají diferenciací z prekursorové buňky, která se nazývá proerytroblast.

Proerytroblast
|
|
Basofilní erytroblast
|
|
Polychromatofilní erytroblast
|
|
Ortochromatický erytroblast
|
|
Retikulocyt
|
|
Erytrocyt

Proerytroblast je buňka kulovitého tvaru, 15-20 μm velká. Dělením vznikají erytroblasty. U basofilního erytroblastu začíná syntéza hemoglobinu. U polychromatofilního erytroblastu je již v buňce tolik hemoglobinu, že cytoplasma ztrácí basofilii. Ortochromatický erytroblast se už dále nedělí. Vyvržením jádra mimo buňku (enukleace) vzniká z erytroblastu retikulocyt.

Retikulocyt je nezralá forma červených krvinek, která je už schopná plnit funkci erytrocytu. V oběhu je za normálních okolností určité množství retikulocytů, jejich podíl se může v případě nutnosti zvyšovat (např. krvácení). Za 3 dny retikulocyt uzraje ve zralou červenou krvinku.

Vývoj erytrocytů trvá asi 7 dní. Erytropoéza je ovlivňována hormony (erytropoetin, tyroxin, testosteron, estrogen, somatotropní hormon) a je při ní důležité železo, vitamín B12 a kyselina listová.

Leukopoéza, vznik bílých krvinek[editovat | editovat zdroj]

Každý typ bílé krvinky vzniká ze samostatné prekursorové buňky. Lymfocyty jsou jediné krevní elementy, které vznikají diferenciací lymfoidní multipotentní buňky, ostatní bílé krvinky vznikají v myeloidní řady.

Lymfopoéza, vývoj lymfocytů[editovat | editovat zdroj]

Část populace lymfoidních multipotentních buněk migruje do brzlíku, kde se dále diferencují na T-lymfocyty. Zbytek lymfoidní řady zůstává v kostní dřeni a dává vzniknout B-lymfocytům. B- a T-lymfocyty se od sebe liší jen povrchovými antigeny na buněčných membránách.

Prekursorovou buňkou je lymfoblast, ten se diferencuje na prolymfocyty. Ty se již dále nedělí a dozrávají v lymfocyty.

lymfoblast → prolymfocyt → lymfocyt

Monocytopoéza, vznik monocytů[editovat | editovat zdroj]

Prekursorovou buňkou pro monocyty je monoblast. Ten se diferencuje na promonocyty, které se dále dělí a diferencují se na zralé monocyty. Monocyty cirkulují v krvi asi 8 hodin, potom vstupují do vaziva, kde se mění v makrofágy.

monoblast → promonocyt → monocyt

Granulopoéza, vývoj granulocytů[editovat | editovat zdroj]

Granulocyty vznikají z prekursorových buněk, myeloblastů. Během diferenciace granulocytů jsou syntetizována specifická granula. U myelocytů již můžeme rozlišit typ vznikajícího granulocytu (neutrofilní, basofilní, eosinofilní). Metamyelocyt se již dále nedělí a dozrává v granulocyty. Granulopoéza je ovlivňována endotoxiny a glukokortikoidy.

myeloblast → promyelocyt → myelocyt → metamyelocyt → granulocyt

Trombopoéza, vznik krevních destiček[editovat | editovat zdroj]

Krevní destičky, trombocyty, nejsou buňkami, pouze fragmenty cytoplasmy obrovských buněk, megakaryocytů. Megakaryocyty se nacházejí v kostní dřeni. Vznikly z prekurzorové buňky, která se nazývá megakaryoblast.

Megakaryoblast → megakaryocyt → trombocyty

Prenatální a postnatální hematopoéza[editovat | editovat zdroj]

Shrnutí[editovat | editovat zdroj]

Při vývoji embrya začíná krvetvorba v krevních ostrůvcích ve žloutkovém váčku, pak v játrech a v oblasti zvané AGM (název pro myši) a nakonec v kostní dřeni.

Hematopoéza probíhá u (dospělého) člověka v myeloidní tkáni v kostní dřeni a v lymfatické tkáni v lymfatických uzlinách nebo ve slezině.

Obecně se dá prenatální krvetvorba rozdělit na tři pediody:

  • Mezoblastová perioda - probíhá ve žloutkovém váčku embrya
  • Hepatolienální perioda - probíhá v základu jater a sleziny
  • Medulární (medulolymfatická) perioda - probíhá v kostní dřeni, lymfopoéza probíhá ve slezině a lymfatických uzlinách

Embryonální vývoj[editovat | editovat zdroj]

16. den - tvorba krevních ostrůvků (to jsou shluky krevních buněk) ve žloutkovém váčku. V krevních ostrůvcích probíhá hematopoéza nejdříve. Primitivní erytrocyty (= megablasty) ve žloutkovém váčku syntetizují embryonální hemoglobin ξε.

Exprese CD34 na hematopoetických buňkách a na přilehlých endotelových buňkách. CD34 označuje předpokládaný hemangioblast v nediferencovaném žloutkovém váčku ještě dříve, než dojde ke tvorbě cév (tvorba cév = angiogeneze). (U křepelky se CD34 exprimuje nejprve na endotelových buňkách a z nich se vyvinou hematopoetické buňky.)

před 19. dnem nebyly nalezeny v embryu krevní buňky (= důkaz, že krevní buňky pocházejí ze žloutkového váčku a dostanou se do embrya až cirkulací)

19. den - splanchnopleura již obsahuje buňky, které se vyvinou na hematopoetické (intraembryonální) kmenové buňky (dokázáno na buněčných kulturách). Pouze kmenové buňky intraembryonálního původu (později ve vývoji) dávají vznik T a B lymfocytům, kolonizují játra ve „2. kolonizaci jater“ a zakládají trvalou hematopoézu.

19. den - nejvyšší frekvence krvetvorných endotelových buněk ve žloutkovém váčku.

21. den (3-somitové stadium) - začíná cirkulace krve a začíná fungovat oběhová soustava. 21. den - v srdeční dutině detekovány primitivní erytrocyty (megablasty) obsahující glykophorin A (= důkaz, že 21. den nastává cirkulace).

22. den (10-somitové stadium) - začátek vývoje jater. Játra netvoří hematopoetické progenitory, ale osídlují je hematopoetické buňky ze žloutkového váčku.

23. den (12-somitové stadium) - začátek krvetvorby v játrech (první kolonizace jater hematopoetickými kmenovými buňkami). Embrynální hemoglobin ξ je nahrazen fetálním hemoglobinem α. Embrynální hemoglobin ε je nahrazen fetálním hemoglobinem γ. Rozptýlené CD34 negativní buňky v játrech.

před 25. dnem potvrzeny ve žloutkovém váčku progenitory erythroidní a granulopoetické. Progenitory buněk jsou potvrzeny až už krev cirkuluje (cirkuluje od 21. dne), takže původ progenitorových buněk může být teoreticky jak ve žloutkovém váčku tak v embryu.

27. den - na vnitřní straně endotelu aorty se objevují hematopoetické buňky (aorta má v té době dvě části) a také roztroušeně v oblasti pupečníkových (umbilikálních) artérií arteriae umbilicales.

30. den - růst shluků hematopoetických buněk v aortě a jejich výskyt také v omfalomezenterické artérii arteria omphalomesentrica.

30. den - druhá kolonizace jater hematopoetickými kmenovými buňkami. CD34 (pozitivní) buňky potvrzeny v játrech.

4. týden - angio-hematopoetické progenitory Flk-1 a VEGF-R2 migrují ze splanchnopleury do subaortálního mezodermu.

4. týden - protein BB9 zjištěn na povrchu endotelových buněk aorty. Tento protein by mohl být prvním markerem hematopetických kmenových buněk (HSC) nebo hemangioblastu. (Protein BB9 mají na povrchu HSC v dospělé kostní dřeňi.)

4,5 týdne - ve žloutkovém váčku potvrzeny progenitory buněk CFU-GEMM, BFU-E, CFU-E a CFU-GM. Množství prgenitorů potom výrazně poklesne a úplně zmizí po 6. týdnu.

4,5 až 5. týden - pokles počtu magaloblastů v játrech. Ty jsou průběžně nahrazeny makrocyty.

35.-36. den - maximální rozvoj shluků hematopetických buněk v arteriích embrya.

5. týden - redukce počtu BFU-E ve žloutkovém váčku a zároveň vzestup počtu v játrech a v krevním řečišti

konec prvního trimestru a později - je detekováno více primitivních progenitorů CFU-GEMM a HPP-CFC (anglicky: high-proliferative colony forming cells)

40. den - po 40. dnu zmizí shluky hematopetických buněk v arterích

60. den - zmizení hematopoézy ve žloutkovém váčku

11. týden (od 10,5 týdne) - začíná krvetvorba v kostní dřeni ve specializovaných mezodermových strukturách (anglicky: primary logettes) v diafýze. První krevní buňky v kostní dřeňi jsou CD15+ myeloidní buňky a posléze také glykoforin A+ erytrocyty. (V kostní dřeňi nejsou CD34+ buňky.)

S vývojem kostní dřeně se tvoří postupně většina erytrocytů a granulocytů v kostní dřeni.

Později nastává krvetvorba ve slezině a lymfatických uzlinách. Tyto lymfoidní orgány postupně produkují většinu lymfocytů a monocytů, přestože lymfoidní progenitorové buňky pocházejí z kostní dřeně.

Většina krvetvorby probíhá u dospělců v kostní dřeni ve stehenní kosti a také v žebrech a hrudní kosti. Krvetvorba však může v případě nezbytnosti pokračovat také v játrech, brzlíku a slezině. Je to tzv. extramedulární = mimodřeňová hematopoéza. Může být příznakem závažných onemocnění, jako je leukémie.

Hematopoéza u myši domácí[editovat | editovat zdroj]

Shrnutí:
Mezi 7-11 dnem se tvoří erythroidní a částečně také myeloidní (unipotentní) prekurzory ve žloutkovém váčku. Erytrocyty ze žloutkového váčku mají jádro (embryoblasty) a embryonální hemoglobin. Mezi 8,5-12,5 dnem se tvoří multipotentní HSC v oblasti zvané AGM, nejdříve v tzv. sub-aortic patches. Odtud teoreticky migrují do jater a odtud také teoreticky osidlují aortic clusters. Pak osidlují další krvetvorné orgány (brzlík, slezinu, kostní dřeň).

Chronologie:

  • 7,5. den - začátek krvetvorby ve žloutkovém váčku. Žloutkový váček tvoří erythroidní a myeloidní linii. Není schopen (ani později) tvořit lymfoidní progenitory.
  • 8. den - cirkulace krve mezi žloutkovým váčkem a tělem


Jak se vyvíjí krvetvorné oblasti uvnitř embrya:

    • před 8. dnem - kaudální intraembryonální splanchnoleura (caudal intraembryonic splanchnoleura) (potvrzena lymfopoéza a v menší míře také myelopoéza) →
    • → 8,5-10. den - anglicky: para-aortic splanchnopleura →
    • → 10.-12. den - AGM. V AGM je aktivita CFU-S.


  • 8,5-12,5. den - sub-aortic patches (= „sub-aortální plošky“) jsou na ventrální straně aorty a jsou umístěny přednostně pod aortic lusters. Lze je detekovat 10,5-11,5. den lépe než aortic clusters, protože sub-aortální plošky exprimují GATA-3 a AA4.1.
  • 9. den - vznik jater jako výchlipka. Játra neiniciují krvetvorbu, ale jsou (stejně jako u člověka) kolonizovány a slouží jako rezervoár hematopoetických buněk vzniklých v dřívější fázi.
  • 10. den (28-32 párů somitů) - kolonizace jater
  • 10,5-11,5. den - aortic clusters (= „aortální shluky“) jsou na straně nejblíže coelomové dutiny, jsou vložené mezi endotelové buňky, např. na ventrální straně dorzální aorty. Exprimují CD34 a AA4.1 (podobně jako endotelové buňky, ale postrádají von Willebrandův faktor)
  • 11. den (40-45 párů somitů) - kolonizace brzlíku
  • 11. den - konec hematopoetické činnosti ve žloutkovém váčku
  • po 12. dnu je brzlík již vždy lymfoidní
  • 13. den - kolonizace sleziny pomocí HSC z jater krevním oběhem
  • 15. den - hematopoetické buňky kolonizují kostní dřeň ihned, jakmile se objeví vaskularizace kostí. Ale jsou to progenitory pozdní fáze hematopoézy a uplatňují se až 4-5 dní po narození myši. Z nich vznikají linie pro dlouhodobou hematopoézu.
  • (27. den - narození myši)

U myší hematopoetické aortic clusters exprimuje CD45 jenom několik buněk (na rozdíl od ptáků a lidí, kde jsou CD45+ všechny buňky v těchto aortálních shlucích).

Odkazy[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

V tomto článku byl použit překlad textu z článku Haematopoiesis na anglické Wikipedii.

  1. Semester 4 medical lectures at Uppsala University 2008 by Leif Jansson
  2. Parslow,T G.;Stites, DP.; Terr, AI.; and Imboden JB. Medical Immunology (1 ed.). <a title="International Standard Book Number" href="https://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a> <a title="Special:BookSources/0-8385-6278-7" href="https://en.wikipedia.org/wiki/Special:BookSources/0-8385-6278-7">0-8385-6278-7</a>.
  3. Morrison, J.; Judith Kimble. 1) Asymmetric and symmetric stem-cell divisions in development and cancer. <a title="Digital object identifier" href="https://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:10.1038.
  4. Morrison, SJ; Weissman, IL (1994 Nov). "The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype.". Immunity 1 (8): 661–73. PMID 7541305.
  5. "http://www.ebioscience.com/resources/pathways/hematopoiesis-from-pluripotent-sem-cells.htm". Retrieved 3 February 2014.
  6. Fernández, KS; de Alarcón, PA (2013 Dec). "Development of the hematopoietic system and disorders of hematopoiesis that present during infancy and early childhood.". Pediatric clinics of North America 60 (6): 1273–89. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 24237971.
  7. Georgiades, CS; Neyman, EG; Francis, IR; Sneider, MB; Fishman, EK (2002 Nov). "Typical and atypical presentations of extramedullary hemopoiesis.". AJR. American journal of roentgenology 179 (5): 1239–43. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 12388506.
  8. Zon, LI (1995 Oct 15). "Developmental biology of hematopoiesis.". Blood 86 (8): 2876–91. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 7579378.
  9. Alenzi, FQ; Alenazi, BQ; Ahmad, SY; Salem, ML; Al-Jabri, AA; Wyse, RK (2009 Mar). "The haemopoietic stem cell: between apoptosis and self renewal.". The Yale journal of biology and medicine 82 (1): 7–18. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 19325941.
  10. Molecular cell biology. Lodish, Harvey F. 5. ed. : - New York : W. H. Freeman and Co., 2003, 973 s. b ill. ISBN 0-7167-4366-3
  11. * For the growth factors also mentioned in previous version File:Hematopoiesis (human) cytokines.jpg: Molecular cell biology. Lodish, Harvey F. 5. ed. : - New York : W. H. Freeman and Co., 2003, 973 s. b ill. ISBN 0-7167-4366-3
  12. Broudy, VC (1997 Aug 15). "Stem cell factor and hematopoiesis.". Blood 90 (4): 1345–64. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 9269751.
  13. Ketley, N. J.; A. C. Newland. "Haemopoietic growth factors.". Postgrad Med J.
  14. Molecular cell biology. Lodish, Harvey F. 5. ed. : - New York : W. H. Freeman and Co., 2003, 973 s. b ill. ISBN 0-7167-4366-3
  15. ^ Hauke, Ralph; Stefano R. Tarantolo (NOVEMBER 200 0). "Hematopoietic Growth Factors". LABORATORY MEDICINE.
  16. ^ Engel, I; Murre, C (1999 Oct). "Transcription factors in hematopoiesis.". Current opinion in genetics & development 9 (5): 575–9. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 10508690.
  17. ^ Ho, PA; Alonzo, TA; Gerbing, RB; Pollard, J; Stirewalt, DL; Hurwitz, C; Heerema, NA; Hirsch, B; Raimondi, SC; Lange, B; Franklin, JL; Radich, JP; Meshinchi, S (2009 Jun 25). "Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group.". Blood 113 (26): 6558–66. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 19304957.
  18. ^ Fiedler, Katja; Cornelia Brunner. Mechanisms Controlling Hematopoiesis.
  19. O'Brien, P; Morin P, Jr; Ouellette, RJ; Robichaud, GA (2011 Dec 15). "The Pax-5 gene: a pluripotent regulator of B-cell differentiation and cancer disease.". Cancer research 71 (24): 7345–50. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 22127921.
  20. Cobaleda, C; Jochum, W; Busslinger, M (2007 Sep 27). "Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors.". Nature 449 (7161): 473–7. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 17851532.
  21. Wang, JH; Nichogiannopoulou, A; Wu, L; Sun, L; Sharpe, AH; Bigby, M; Georgopoulos, K (1996 Dec). "Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation.". Immunity 5 (6): 537–49. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 8986714.
  22. Sun, L; Liu, A; Georgopoulos, K (1996 Oct 1). "Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development.". The EMBO journal 15 (19): 5358–69. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 8895580.
  23. ^ Schjerven, H; McLaughlin, J; Arenzana, TL; Frietze, S; Cheng, D; Wadsworth, SE; Lawson, GW; Bensinger, SJ; Farnham, PJ; Witte, ON; Smale, ST (2013 Oct). "Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros.". Nature immunology 14 (10): 1073–83. <a title="PubMed Identifier" class="mw-redirect" href="https://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a> 24013668.

Literatura[editovat | editovat zdroj]

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]