Řada (matematika)

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Řada (také nekonečná řada) je matematický výraz ve tvaru , kde je nějaká posloupnost.

Pokud jsou členy řady tvořeny čísly, tzn. každý člen závisí pouze na svém pořadovém čísle , pak hovoříme o číselných řadách (řadách s konstantními členy). Každý prvek řady však může záviset nejen na svém pořadovém čísle , ale také na dalších parametrech. Takové řady označujeme jako funkční (popř. také funkcionální). Funkční řada je řada, jejímiž členy jsou funkce. Funkční řadu, kterou získáme z funkční posloupnosti , vyjadřuje výraz

pro , kde je vzájemný průnik definičních oborů funkcí .

Zvolíme-li libovolné , pak získáme číselnou řadu .

Součet řady[editovat | editovat zdroj]

Z posloupnosti lze vytvořit novou posloupnost , jejíž členy jsou určeny jako , tedy (konečný) součet prvních n prvků posloupnosti . Posloupnost označujeme jako posloupnost částečných součtů nebo sumaci řady . Člen této posloupnosti se nazývá -tým částečným součtem nekonečné řady.

Součet nekonečné řady je definován prostřednictvím limity posloupnosti částečných součtů jako

.

Termín „řada“ bývá v některých případech ztotožňován s tímto součtem.

Konvergence řady[editovat | editovat zdroj]

Má-li posloupnost částečných součtů konečnou limitu, tzn.

,

pak říkáme, že řada je konvergentní (např. ), popř. bodově konvergentní v případě funkční řady. Pokud uvedená limita neexistuje (např. - posloupnost částečných součtů je oscilující) nebo je nevlastní, tzn. (např. ), pak říkáme, že řada je divergentní.

Pro číselné řady je součtem řady číslo. Pro funkční řady je součtem řady funkce .

Řada komplexních čísel , kde jsou reálná čísla pro , je konvergentní tehdy a jen tehdy, konvergují-li obě řady a .

Pokud a , pak

Konverguje-li řada , pak konverguje také řada . Jestliže konverguje řada , pak konverguje také řada, kterou z této řady získáme přidáním nebo odebráním konečného počtu členů. Pokud řada diverguje, pak bude divergentní také řada, která vznikne z této řady přidáním nebo odebráním konečného počtu členů.

U funkčních řad označujeme množinu všech , pro která je daná řada konvergentní, jako obor konvergence dané řady.

Absolutní konvergence[editovat | editovat zdroj]

Pokud konverguje řada , ale nekonverguje řada , říkáme, že řada konverguje neabsolutně.

Pokud konverguje řada i řada , pak říkáme, že řada konverguje absolutně.

Pro absolutně konvergentní řady platí komutativní, asociativní a distributivní zákony. Přesouváním členů absolutně konvergentní řady se nezmění konvergence ani součet řady.

Máme-li dvě absolutně konvergentní řady se součty , pak platí

,

kde .

Stejnoměrná konvergence[editovat | editovat zdroj]

Řadu funkcí označíme jako stejnoměrně konvergentní, pokud v uzavřené oblasti komplexní roviny existuje takové číslo a k němu číslo , že pro libovolné a platí . Je-li reálné, pak oblast představuje interval.

Podmínky konvergence[editovat | editovat zdroj]

U konvergentních řad lze zavést tzv. zbytek řady po -tém součtu jako

Podmínku konvergence řady lze vyjádřit také tak, že nekonečná řada konverguje právě tehdy, pokud k libovolnému kladnému číslu existuje takové , že pro libovolné platí nerovnost

Nutnou podmínkou konvergence řady je

Pokud součet řady vyjádříme ve tvaru , kde je -tý částečný součet a je zbytek řady po -tém částečném součtu, pak nutnou a postačující podmínku konvergence této řady lze vyjádřit vztahem

Nutná a postačující podmínka konvergence bývá také vyjadřována ve formě tzv. Bolzanova-Cauchyova kritéria. Podle něj je nekonečná řada konvergentní právě tehdy, existuje-li k libovolnému takové číslo , že pro libovolná platí

Kritéria konvergence[editovat | editovat zdroj]

Určení součtu řady a tedy rozhodnutí o konvergenci nebo divergenci bývá často poměrně složité. V mnoha případech je postačující nahradit součet nekonečné řady jejím -tým částečným součtem . U konvergentních řad se chyba , které se touto náhradou dopouštíme, s rostoucím zmenšuje. U divergentních řad tomu tak ale není. Je tedy důležité umět rozhodnout o konvergenci nebo divergenci dané řady, aniž bychom získali součet řady.

K tomuto účelu můžeme použít buď přímo podmínky konvergence řad, nebo tzv. kritéria konvergence řad.

Kritéria konvergence řad ulehčují rozhodnutí o konvergenci (nebo divergenci) nekonečné řady. Kritérií pro určování konvergence existuje celá řada, přičemž každý řešený případ je nutno posuzovat zvlášť a zvolit vhodné kritérium.

Srovnávací kritérium[editovat | editovat zdroj]

Při srovnávacím (porovnávacím) kritériu uvažujeme dvě řady s nezápornými členy , přičemž pro všechna platí . Řadu označujeme jako minorantní řadu (minorantu) k řadě a řadu jako majorantní řadu (majorantu) k řadě . Potom platí, že pokud konverguje majoranta, tzn. , konverguje také minoranta, tedy . Diverguje-li minoranta , diverguje také majoranta, tedy .

Podílové kritérium[editovat | editovat zdroj]

Při podílovém kritériu konverguje řada s kladnými členy tehdy, existuje-li reálné číslo takové, že pro každé platí . Pokud je , pak řada diverguje.

Limitní podílové kritérium[editovat | editovat zdroj]

Podrobnější informace naleznete v článku D'Alembertovo kritérium.

Zavedeme-li pro řadu s kladnými členy veličinu , pak dostáváme tzv. limitní podílové kritérium konvergence, podle kterého je řada konvergentní pro , divergentní pro a pro může být konvergentní nebo divergentní.

Odmocninové kritérium[editovat | editovat zdroj]

Při odmocninovém (Cauchyově) kritériu uvažujeme, že řada s kladnými členy konverguje, pokud existuje reálné číslo a pro každé platí . Pro případ řada diverguje.

Limitní odmocninové kritérium[editovat | editovat zdroj]

Pokud pro řadu s kladnými členy zavedeme , pak můžeme použít limitní odmocninové kritérium, podle kterého je řada konvergentní pro , divergentní pro a pro může konvergovat nebo divergovat.

Raabeovo kritérium[editovat | editovat zdroj]

Podle Raabeova kritéria je řada s kladnými členy konvergentní tehdy, pokud existuje takové přirozené číslo , že pro všechna platí . Jestliže , pak řada diverguje.

limitní Raabeovo kritérium[editovat | editovat zdroj]

Jestliže pro řadu s kladnými členy zavedeme , pak na základě limitního Raabeova kritéria určíme, že řada konverguje pro , diverguje pro a pro může konvergovat i divergovat.

Integrální kritérium[editovat | editovat zdroj]

Nechť je řada s kladnými členy, jejíž členy lze vyjádřit jako . Pokud ve funkci nahradíme diskrétní proměnnou spojitou proměnnou , přičemž bude spojitou a klesající funkcí na intervalu , pak podle tzv. integrálního kritéria je řada konvergentní tehdy, pokud konverguje integrál . Pokud integrál diverguje, pak diverguje také řada .

Leibnizovo kritérium[editovat | editovat zdroj]

Pro alternující řady, které zapíšeme jako , kde , lze použít Leibnizovo kritérium. Podle tohoto kritéria konverguje uvedená alternující řada tehdy, pokud existuje takové, že (tj. od určitého indexu ryze monotónně klesá), a zároveň .

Gaussovo kritérium[editovat | editovat zdroj]

[1]Nechť je kladná posloupnost, pro niž existují , kladné a omezená posloupnost taková, že pro všechny platí:

  • Když nebo když a , pak řada konverguje.
  • Když nebo když a , pak řada diverguje.

Dirichletovo kritérium[editovat | editovat zdroj]

Nechť je reálná posloupnost a komplexní posloupnost, pro které platí:

  • je od jistého indexu monotonní a ;
  • má omezenou posloupnost částečných součtů.

Pak řada konverguje.

Abelovo kritérium[editovat | editovat zdroj]

Nechť je reálná posloupnost a komplexní posloupnost, pro které platí:

  • je monotonní a omezená;
  • je konvergentní řada.

Pak řada konverguje.

Existuje také verze Abelova kritéria stejnoměrné konvergence pro řady funkcí.

Přerovnání řady[editovat | editovat zdroj]

Operace sčítání v je komutativní. Proto při sčítání konečného počtu čísel nezáleží na pořadí, v jakém jsou sčítány. Při nekonečně mnoha sčítancích tomu tak být nemusí.

Přerovnáním řady podle se nazývá řada , kde je bijekce .

Pokud je řada absolutně konvergentní, pak její každé přerovnání je také absolutně konvergentní řada a má stejný součet.

Riemannova věta[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Riemannova věta.

Je-li řada neabsolutně konvergentní reálná řada, pak ke každému existuje přerovnání , jež má součet . Rovněž existuje oscilující přerovnání .

Důkaz: Označme K rozšířené reálné číslo rovné součtu kladných členů řady (je-li jich nekonečně mnoho, pak jej lze definovat jako součet řady s vynecháním nekladných členů nebo ekvivalentně jako supremum součtů konečných množin kladných členů). Podobně buď Z součet záporných členů řady.

Pak jsou jen tři možnosti:
a) K i Z jsou konečné, pak řada v každém přerovnání konverguje k číslu K+Z.
b) přesně jedno z nich je konečné, pak řada v každém přerovnání diverguje k tomu z nich, které je nekonečné
c) Obě jsou nekonečná. Potom přerovnání konvergující k číslu s sestrojíme tak, že nejprve budeme nejdříve vkládat kladné čeny (počínaje největšími), dokud posloupnost částečných součtů (známe-li prvních n prvků vytvářeného přerovnání, známe i prvních n částečných součtů) nepřesáhne s. Poté budeme vkládat záporné členy (počínaje těmi, které jsou v absolutní hodnotě největší), dokud posloupnost částečných součtů neklesne pod s. Tento postup opakujeme donekonečna. Pokud řada obsahuje nulové členy, pak při každé "změně směru" vložíme jeden, dokud všechny nevyčerpáme. Tento postup lze formalizovat pomocí věty o definici rekurzí.

Jelikož K i Z jsou nekonečné, neexistuje žádný index , za nímž by již nedošlo ke změně směru. Z toho též plyne, že všechny členy původní řady budou vyčerpány, jedná se tedy skutečně o přerovnání.

Zbývá ukázat, že posloupnost částečných součtů konverguje k s. Pro libovolné ε>0 z definice konvergence existuje index takový, že všechny členy původní řady, které jsou v absolutní hodnotě větší, než ε, jsou v novém přerovnání vyčerpány před . Označme nejbližší další index, kde došlo ke změně směru. Od tohoto indexu leží všechny částečné součty v intervalu (s-ε, s+ε), neboť jakmile je hodnota s překročena, dojde ihned ke změně směru. Přerovnaná řada tedy konverguje k s.

Oscilující řady lze zkonstruovat podobně, přičemž přesáhne-li částečný součet číslo 1, přidáváme záporné členy, dokud částečný součet neklesne pod -1, pak přidáváme kladné.

Násobení řad[editovat | editovat zdroj]

Pro absolutně konvergentní řady a platí:

Césarovské součty[editovat | editovat zdroj]

Částečné součty:

Označme:

Řekneme, že řada je Césarovsky sumovatelná, pokud existuje

Řadu označíme symbolem pokud [2]

Některé významné řady[editovat | editovat zdroj]

Obecně lze říci, že geometrická řada konverguje právě tehdy, je-li .

.

Ačkoli je splněna nutná podmínka pro konvergenci řady, tj. , je součet této řady roven nekonečnu, tedy řada diverguje. Nazývá se harmonická, protože každý člen, kromě prvního, je harmonickým průměrem sousedních členů.

  • Řada s kladnými členy je taková řada , jejíž všechny členy vyhovují podmínce . Řada s kladnými členy má vždy součet.
  • Alternující řada je řada, jejíž členy pravidelně střídají znaménka. Jde tedy o řadu

dy limitu

Odkazy[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

  1. Springer online, Gauss criterion
  2. http://en.wikipedia.org/wiki/Ces%C3%A0ro_summation

Související články[editovat | editovat zdroj]