Posloupnost

Z Wikipedie, otevřené encyklopedie
Skočit na navigaci Skočit na vyhledávání

Posloupnost (sekvence) je v matematice konečná nebo nekonečná sada objektů, v níž záleží na pořadí a objekty se mohou opakovat. Například zápis libovolného slova (nebo libovolný řetězec znaků) lze považovat za konečnou posloupnost písmen. Pokud je posloupnost konečná, často ji nazýváme uspořádanou n-ticí.

Pokud jsou všechny členy posloupnosti čísla, mluvíme o číselné posloupnosti. Uspořádanou n-tici čísel můžeme chápat jako souřadnice bodu v n-rozměrném eukleidovském prostoru a často ji nazýváme aritmetický vektor.

Formální definice[editovat | editovat zdroj]

Posloupnost je zobrazení z množiny přirozených čísel do libovolné množiny.

Nekonečná posloupnost je zobrazení množiny přirozených čísel do libovolné množiny.

Číselná posloupnost je zobrazení z množiny přirozených čísel do libovolné číselné množiny (například do množiny komplexních nebo reálných čísel).

Posloupnost značíme obvykle , i když správnější by bylo (podobně jako u uspořádané n-tice) , , nebo (pokud nemůže dojít k záměně s jiným značením) pouze . Čteme „posloupnost á en pro en (jdoucí) od jedné do nekonečna“.

Posloupnost může být určena výrazem (předpisem), který vyjadřuje přímo n-tý člen posloupnosti , např. odpovídá posloupnosti

Druhy posloupností[editovat | editovat zdroj]

Jsou-li členy posloupnosti čísla, hovoříme o číselné posloupnosti, jsou-li to funkce, pak hovoříme o funkčních posloupnostech. Funkční posloupnost je posloupnost, která každému přirozenému číslu přiřazuje funkci , přičemž hodnota n-tého členu funkční posloupnosti závisí nejen na pořadovém čísle , ale také na parametrech funkce (v obecném případě nemusí jít o funkci jedné proměnné).

Číselné posloupnosti[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Číselná posloupnost.

Číselná posloupnost je posloupnost, která každému přirozenému číslu přiřazuje číslo , přičemž závisí pouze na hodnotě .

Číselná posloupnost může být zadána rekurentně, kdy jsou členy posloupnosti určeny prostřednictvím předcházejících členů. Rekurentním zadáním lze snadno definovat např. Fibonacciho posloupnost:

.

Její členy jsou 1, 1, 2, 3, 5, 8, ...

Rekurentní zadání posloupnosti

Rekurentní vzorec určuje člen posloupnosti pomocí znalosti jednoho nebo více předcházejících členů. Součástí každého rekurentního vzorce musí být automaticky zadán i první člen (resp. několik prvních členů). Nevýhoda rekurentního zadání je nutnost znalosti předcházejícího členu, což je u např. 1000 členu nepříjemná situace.[1]

Přecházení mezi jednotlivými zadáními[2]

vzorec pro n-tý člen ⟶ rekurentní vzorec

Zde platí, že více způsobů vede na více řešení. Rekurentních vzorců pro jednu posloupnost je mnoho, na konci si stačí pouze vybrat. Mnohdy je nejjednodušší způsob pouze odhadnout. Většinou stačí vypsat si pár prvních členů. První způsob je tedy odhad. Druhý způsob nalezení rekurentního vzorce je rozdíl sousedních členů. Třetí způsob je podle podílu sousedních členů.

Rekurentní vzorec ⟶ vzorec pro n-tý člen

I v tomto případě lze v mnoha případech odhadovat možný vzorec. Zde je také "záchrana", pokud právě neumíme (resp. nejsme schopni) odhadnout vzorec. Vypíšeme si prvních n členů. Poté si vypíšeme opět n členů, ale tak, aby obsahoval vždy i předchozí člen (např. a1 = 1, a2 = a1 + 5, a3 = a2 + 5, atd..). Dáme do rovnice rekurentní zadání an+1 členu a součet an+1 členů. Po úpravě nám vyjde vzorec pro (n+1)-tý člen a posunutím o jeden index dolů dojdeme k požadovanému výsledku.

Vybraná posloupnost[editovat | editovat zdroj]

Podrobnější informace naleznete v článku Vybraná posloupnost.

Je-li posloupnost (obecně reálných) čísel a rostoucí posloupnost přirozených čísel, pak složené zobrazení nazýváme posloupnost vybraná (též podposloupnost) z (jinými slovy, z vybereme některé členy, ale tak, že jejich indexy rostou, např. všechny liché členy).

Posloupnosti v topologických prostorech[editovat | editovat zdroj]

Posloupnosti hrají důležitou roli v topologii, zvláště ve studiu metrických prostorů. Například:

Posloupnosti lze zobecnit na sítě nebo filtry. Tato zobecnění nám umožňují rozšířit některé z výše uvedených vět na prostory bez metriky.

Odkazy[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

V tomto článku byl použit překlad textu z článku Sequence na anglické Wikipedii.

  1. Posloupnosti a řady - Zadání - Rekurentní vzorec. www2.karlin.mff.cuni.cz [online]. [cit. 2022-02-28]. Dostupné online. 
  2. Posloupnosti a řady - Zadání - Převod mezi jednotlivými vyjádřeními. www2.karlin.mff.cuni.cz [online]. [cit. 2022-02-28]. Dostupné online. 

Související články[editovat | editovat zdroj]