Posloupnost
Posloupnost (sekvence) je v matematice konečná nebo nekonečná sada objektů, v níž záleží na pořadí a objekty se mohou opakovat. Například zápis libovolného slova (nebo libovolný řetězec znaků) lze považovat za konečnou posloupnost písmen. Pokud je posloupnost konečná, často ji nazýváme uspořádanou n-ticí.
Pokud jsou všechny členy posloupnosti čísla, mluvíme o číselné posloupnosti. Uspořádanou n-tici čísel můžeme chápat jako souřadnice bodu v n-rozměrném eukleidovském prostoru a často ji nazýváme aritmetický vektor.
Formální definice[editovat | editovat zdroj]
Posloupnost je zobrazení z množiny přirozených čísel do libovolné množiny.
Nekonečná posloupnost je zobrazení množiny přirozených čísel do libovolné množiny.
Číselná posloupnost je zobrazení z množiny přirozených čísel do libovolné číselné množiny (například do množiny komplexních nebo reálných čísel).
Posloupnost značíme obvykle , i když správnější by bylo (podobně jako u uspořádané n-tice) , , nebo (pokud nemůže dojít k záměně s jiným značením) pouze . Čteme „posloupnost á en pro en (jdoucí) od jedné do nekonečna“.
Posloupnost může být určena výrazem (předpisem), který vyjadřuje přímo n-tý člen posloupnosti , např. odpovídá posloupnosti
Druhy posloupností[editovat | editovat zdroj]
Jsou-li členy posloupnosti čísla, hovoříme o číselné posloupnosti, jsou-li to funkce, pak hovoříme o funkčních posloupnostech. Funkční posloupnost je posloupnost, která každému přirozenému číslu přiřazuje funkci , přičemž hodnota n-tého členu funkční posloupnosti závisí nejen na pořadovém čísle , ale také na parametrech funkce (v obecném případě nemusí jít o funkci jedné proměnné).
Číselné posloupnosti[editovat | editovat zdroj]
Číselná posloupnost je posloupnost, která každému přirozenému číslu přiřazuje číslo , přičemž závisí pouze na hodnotě .
Číselná posloupnost může být zadána rekurentně, kdy jsou členy posloupnosti určeny prostřednictvím předcházejících členů. Rekurentním zadáním lze snadno definovat např. Fibonacciho posloupnost:
.
Její členy jsou 1, 1, 2, 3, 5, 8, ...
Vybraná posloupnost[editovat | editovat zdroj]
Je-li posloupnost (obecně reálných) čísel a rostoucí posloupnost přirozených čísel, pak složené zobrazení nazýváme posloupnost vybraná (též podposloupnost) z (jinými slovy, z vybereme některé členy, ale tak, že jejich indexy rostou, např. všechny liché členy).
Posloupnosti v topologických prostorech[editovat | editovat zdroj]
Posloupnosti hrají důležitou roli v topologii, zvláště ve studiu metrických prostorů. Například:
- Metrický prostor je kompaktní právě tehdy, když je sekvenčně kompaktní.
- Zobrazení z metrického prostoru do jiného metrického prostoru je spojité právě tehdy, když obrazem každé konvergentní posloupnosti je konvergentní posloupnost.
- Metrický prostor je souvislý právě tehdy, když při každém rozdělení prostoru na dvě množiny, existuje v jedné z těchto množin posloupnost, která konverguje k bodu ve druhé z množin.
- Topologický prostor je separabilní právě tehdy, když existuje hustá posloupnost bodů.
Posloupnosti lze zobecnit na sítě nebo filtry. Tato zobecnění nám umožňují rozšířit některé z výše uvedených vět na prostory bez metriky.
Odkazy[editovat | editovat zdroj]
Reference[editovat | editovat zdroj]
V tomto článku byl použit překlad textu z článku Sequence na anglické Wikipedii.