Felix Christian Klein

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Felix Christian Klein
Felix Christian Klein
Felix Christian Klein
Narození 25. dubna 1849
Düsseldorf
Prusko
Úmrtí 22. června 1925
Göttingen, Německo
Národnost německá
Občanství Německý spolek, Německé císařství a Výmarská republika
Alma mater univerzita v Bonnu
Znám jako matematik
Manželka Anna Hegelová (1875)
Některá data mohou pocházet z datové položky.

Felix Christian Klein (25. dubna 1849, Düsseldorf, Prusko22. června 1925, Göttingen, Německo) byl německý matematik. Zabýval se především geometrií (zejména neeukleidovskou), ale také teorií grup a teorií funkcí. Roku 1872 formuloval tzv. Erlangenský program, jehož hlavní myšlenkou je studovat jednotlivé geometrické struktury pomocí jejich symetrií a invariantů, a tak docílit hlubšího propojení geometrie s algebrou. Tento program výrazně ovlivnil rozvoj matematiky a fyziky ve dvacátém století.

Život[editovat | editovat zdroj]

Klein se narodil v Düsseldorfu do rodiny pruského vládního úředníka. Navštěvoval gymnázium v Düsseldorfu a poté studoval matematiku a fyziku na Rheinische Friedrich-Wilhelms-Universität zu Bonn am Rhein v Bonnu. Doktorát získal v roce 1868 za práci Über die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Koordinaten auf eine kanonische Form pod vedením Julia Plückera.

Po Plückerově smrti (1868) spolupracoval Klein s Alfredem Clebschem, který se také zasadil o to, aby Klein získal v roce 1872 místo profesora v Erlagenu v pouhých 23 letech. V roce 1875 však Klein získal místo na Technische Hochschule v Mnichově, kde vychoval řadu pozdějších vynikajících matematiků a fyziků (Adolf Hurwitz, Max Planck).

Ještě v roce 1875 se oženil s Annou Hegelovou, vnučkou filosofa Georga W. F. Hegela.

V roce 1880 odešel na univerzitu v Lipsku, kde zůstal do roku 1886. V této době Klein vážně onemocněl a v letech 1883-1884 byl sužován těžkými depresemi. Charakter jeho matematické práce se poté pozvolna měnil, nepřestal však ovlivňovat vrcholnou matematiku své doby. Roku 1886 odešel do Göttingenu, kde zůstal pracovat až do odchodu do penze roku 1913. Během této doby dokázal z univerzity v Göttingenu vytvořit jedno z největších center matematiky na světě. Zasadil se také o to, že na göttingenskou univerzitu byly od roku 1889 přijímány i ženy. Od roku 1900 se Klein významně angažoval v problematice výuky matematiky na středních školách - zavedl například vyučování diferenciálního a integrálního počtu.

Ocenění[editovat | editovat zdroj]

V roce 1885 byl Felix Klein zvolen členem Royal Society. Roku 1893 získal De Morganovu medaili udělovanou Londýnskou matematickou společností a v roce 1912 pak Copleyovu medaili.

Přínos matematice[editovat | editovat zdroj]

Felix Klein patří k velmi významným matematikům a vytvořil vlivné dílo nadčasové hodnoty.[1] Jeho nejhlubší myšlenky se týkají zejména principiálních souvislostí mezi geometrií a algebrou (teorií grup). V této oblasti spolupracoval se Sophusem Liem. Oba tito vědci realizovali základy Kleinova Erlangenského programu, který výrazně ovlivnil nejen rozvoj moderní matematiky, ale velmi přispěl např. též k rozvoji teorie relativity a částicové fyziky. Klein se přitom zabýval zejména diskrétními grupami symetrií, zatímco Lie spojitými symetriemi. Při studiu neeukleidovských geometrií Klein objevil dvojrozměrnou uzavřenou plochu, která má pouze jeden povrch. Tato plocha se dnes po něm nazývá Kleinova láhev. Objevil též jeden z mimořádně významných a studovaných útvarů moderní matematiky, známým jako Kleinova kvartická křivka či Kleinova kvartika, fascinující svou symetrií a pozoruhodnými souvislostmi napříč matematikou. Kleinova kvartika představuje v jistém smyslu zobecnění Platónských těles pro případ, kdy jsou stěny tvořeny 24 pravidelnými sedmiúhelníky. Toto zobecnění je možné v prostoru s hyperbolickou geometrií. Klein ukázal, že tento útvar má právě 168 různých diskrétních symetrií (při uvažování zrcadlových symetrií 336) a tyto symetrie klasifikoval. Jde tedy o první případ tzv. Hurwitzovy plochy, dosahující maximální možný počet symetrií pro zadaný genus této plochy (v daném případě genus=3). V třírozměrném eukleidovském prostoru může být Kleinova kvartika reprezentována jako jistá plocha se třemi otvory (genus=3) a základní symetrií čtyřstěnu. Tento Kleinem objevený útvar v sobě slučuje tolik pozoruhodných vztahů a překvapivých souvislostí, že některými vlivnými matematiky bývá dokonce považován za „opravdu centrální část matematiky“.[2]

Reference[editovat | editovat zdroj]

  1. Životopis Felixe Kleina (anglicky)
  2. "The Eightfold Way: The Beauty of Klein's Quartic Curve". S. Levy (ed.), Cambridge Univ. Press, Cambridge, 1999.

Související články[editovat | editovat zdroj]