Trajektorie

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Trajektorie s vyznačením bodů v různých časových okamžicích.

Trajektorie (též pohybová křivka) je geometrická čára prostorem, kterou hmotný bod nebo těleso při pohybu opisuje. Jedná se tedy o množinu všech poloh (hmotného) bodu, v nichž se může v různých časových okamžicích nacházet.

Trajektorií může být přímka, kružnice, elipsa či jakákoliv obecná křivka. Podle tvaru trajektorie dělíme pohyb na přímočarý a křivočarý.

Trajektorii pohybu lze vyjádřit pomocí polohového vektoru \mathbf{r}, který vyjádříme jako funkci času t, tzn. \mathbf{r}=\mathbf{r}(t).

Tvar trajektorie je závislý na volbě vztažné soustavy.

Délka trajektorie se nazývá dráha. Je to vzdálenost, kterou hmotný bod opíše za určitou dobu a značí se obvykle s. Dráha je funkcí času (závisí na čase) s=s(t).

Příklady[editovat | editovat zdroj]

Mějme např. bod na obvodu jedoucího kola. Zvolíme-li za vztažnou soustavu zemi, bude trajektorií pohybu tzv. cykloida. Pokud zvolíme soustavu spojenou např. s automobilem, ke kterému kolo patří, pak bude bod na obvodu kola vykonávat pohyb po kružnici, tj. trajektorií bude kružnice.

Budeme-li místo bodu na obvodu sledovat střed daného kola, pak v případě volby vztažné soustavy spojené se zemí půjde o pohyb přímočarý a trajektorií bude tedy přímka.

Související články[editovat | editovat zdroj]