Kinematika

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Kinematika je část mechaniky, která se zabývá klasifikací a popisem různých druhů pohybu, ale nezabývá se jeho příčinami. Naproti tomu dynamika zkoumá pohyb z hlediska působení sil.

Kinematika se tedy zaměřuje na sledování polohy, rychlosti apod. Nesleduje však dynamické veličiny, jako např. hybnost a energii, kterými se zabývá dynamika.

Volný pád.gif

Pomocné pojmy[editovat | editovat zdroj]

Důležitým kinematickým pojmem je hmotný bod. Jedná se o idealizaci, kdy libovolné těleso při popisu jeho pohybu nahrazujeme bodem s danou hmotností. Tento bod obvykle umísťujeme do těžiště tělesa. Poloha tělesa je údaj, vyjadřující umístění tělesa vzhledem ke vztažné soustavě. Jednou z možností, jak zadat polohu tělesa je polohový vektor neboli průvodič. Je to spojitá vektorová funkce času, kterou je zvykem psát ve tvaru

\bold{r}=\bold{r}(t)= \sum_{i=1}^{3} x^i(t) \bold{e}_i = x^i \bold{e}_i

(e_i jsou jednotkové bázové vektory). Poslední rovnost je stručným zápisem předchozí sumy pomocí Einsteinovy konvence.

Od obecného polohového vektoru můžeme přejít ke konkrétní soustavě souřadnic. V rovině jsou nejpoužívanější kartézská soustava souřadnic a polární soustava souřadnic.

Základní pojmy[editovat | editovat zdroj]

Mechanickým pohybem se ve fyzice označuje takový pohyb, při kterém dochází ke změně polohy tělesa, popř. hmotného bodu vzhledem ke vztažné soustavě. Kudy se hmotný bod pohybuje popisuje trajektorie, geometrická čára prostorem, kterou hmotný bod při pohybu opisuje. Podle tvaru trajektorie rozlišujeme přímočarý pohyb (probíhá podél konstantně směřujícího vektoru) a křivočarý pohyb (nepřímočarý). Délku trajektorie nazýváme dráha.

Při pohybu se mění velikost i směr polohového vektoru.

První časovou derivaci polohového vektoru nazýváme okamžitá rychlost. Průměrnou rychlost zavádíme jako

\bold{v_p}=\frac{\bold{r}\left(t_1\right)-\bold{r}\left(t_2\right)}{t_1-t_2}.

Limitním přechodem od průměrné rychlosti zavádíme (zpětně) rychlost okamžitou:

\mathbf{v}= \lim_{t_1\to t_2}\frac{\bold{r}\left(t_1\right)-\bold{r}\left(t_2\right)}{t_1-t_2}= \frac{d\bold{r}(t)}{dt}= \sum_{i=1}^{3} {{dx^i(t)} \over {dt}} \bold{e}_i ={\mathrm{d}\mathbf{s} \over \mathrm{d}t}.


První časovou derivaci rychlosti nazýváme zrychlení.

\bold{a}=\frac{d\bold{v}}{dt}=\frac{dv}{dt}\bold{\tau^0}+v\frac{d\bold{\tau^0}}{dt},

kde \bold{\tau^0}je jednotkový tečný vektor. Výraz můžeme dále rozepsat jako

\bold{a}=\frac{dv}{dt}\bold{\tau^0}+v\frac{ds}{dt}\frac{d\bold\tau^0}{ds}=\frac{dv}{dt}\bold{\tau^0}+v^2\frac{d\bold{\tau^0}}{ds},

což lze interpretovat, jako že se zrychlení skládá z tečné a normálové složky, tedy

\bold{a}=\bold{a_t}+\bold{a_n},

kde \bold{a_n}=\frac{v^2}{R}\bold{n^0}, přičemž R je poloměr křivosti a \bold n^0 jednotkový vektor ve směru normály.

Je-li tečné zrychlení nulové, jedná se o rovnoměrný pohyb, v opačném případě o nerovnoměrný pohyb.

Skládání pohybů - Princip nezávislosti pohybů - Skládání rychlostí - Relativita pohybu - Vztažná soustava - Galileiho princip relativity - Einsteinův princip relativity

Popis jednotlivých druhů pohybů[editovat | editovat zdroj]

Rovnoměrný přímočarý pohyb - Rovnoměrně zrychlený přímočarý pohyb - Nerovnoměrný přímočarý pohyb - Rovnoměrný pohyb po kružnici - Rovnoměrně zrychlený pohyb po kružnici - Nerovnoměrný pohyb po kružnici

Veličiny[editovat | editovat zdroj]

Dráha - Rychlost - Zrychlení - Úhlová dráha - Úhlová rychlost - Úhlové zrychlení - Dostředivé zrychlení - Perioda (fyzika) - Frekvence (Kmitočet)

Reference[editovat | editovat zdroj]

[1]

  1. Z. Horák, F. Krupka: Fyzika, SNTL/SVTL, Praha 1966

Literatura[editovat | editovat zdroj]

  • JULINA M, VENCLÍK V.. Mechanika-kinematika. Praha : Scientia, 2002.  

Související články[editovat | editovat zdroj]