DNA čip

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Zvětšený snímek dvoukanálového DNA čipu s výřezem v ještě větší velikosti. Tento čip obsahuje celkem asi 40000 vlastností
DNA čipy od firmy Affymetrix

DNA čip (často i v našem prostředí nazýván anglickým názvem DNA microarray) je technologie umožňující molekulárně-biologické analýzy výrazně paralelního rázu, především analýzu exprese genů. Jedná se o destičku (povětšinou skleněnou nebo silikonovou), s mnoha (běžně desetitisíci, výjimečně až miliony) vzorky jednovláken DNA oligonukleotidů. Tyto vzorky se nazývají vlastnosti (features) a každý z nich obsahuje několik molekul jednoho konkrétního DNA oligonukleotidu. Po kontaktu takovéto destičky s testovaným vzorkem − směsí označených DNA oligonukleotidů − molekuly vzorku (nazývané cílové) hybridizují s komplementárními molekulami přichycenými na destičce. Poté jsou (typicky na bázi fluorescence) detekována místa, kde došlo k hybridizaci a je tak zjištěno, jaké molekuly oligonukleotidů vzorek obsahoval. I jediný experiment produkuje velké množství dat, proto je pro porozumění výsledků takřka vždy nutné použít metody bioinformatiky. V dnešní době existuje několik firem, produkujících DNA čipy komerčně (např. Affymetrix, Agilent Technologies, Eppendorf či Illumina), rovněž jsou ale hojně vytvářeny přímo ve výzkumných laboratořích pro vlastní potřebu. Obdobou DNA čipů jsou RNA čipy a proteinové čipy.

Mikropole

Průběh experimentu[editovat | editovat zdroj]

DNA čip je založen na principu párování komplementárních bází nukleotidů − spojení vodíkovými můstky. Možných postupů při experimentu je více, tradiční experiment pro zjištění genů exprimovaných v jedné buňce v daném okamžiku lze popsat zhruba takto:

  1. Vytvoření DNA čipu: Vybrané DNA oligonukleotidy − jednovlákna (například části genů, genové reportéry) známých sekvencí, nazývaná sondy jsou speciálními metodami přichyceny k povrchu destičky pevnou kovalentní vazbou. Vždy několik stejných molekul na jednom místě tvoří tzv. vlastnost, vlastnosti jsou na destičce prostorově odděleny.
  2. Vytvoření vzorku: Typickým příkladem vzorku je všechna mRNA přítomná v určité buňce v určitém okamžiku. Vzorek musí být nejdříve purifikován ("vyčištěn"), (např. elektroforézou, PCR se specifickými primery) poté je reversní transkripcí převeden do cDNA. Dále může proběhnout amplifikace pomocí PCR pro zajištění dostatečného počtu molekul požadovaných typů ve vzorku a dělení molekul cDNA na kratší pomocí restrikčních endonukleáz. Během reverzní transkripce, PCR amplifikace či po nich probíhá nezbytný krok označení molekul. Ke každé molekule je připojeno několik molekul (typicky zhruba jedna na každých 60 bází) fluorescentní (popř. jiné, např. radioaktivní) látky, jejíž přítomnost, popř. množství bude možno později detekovat. Typickými fluorescenčními látkami používanými pro tyto pokusy jsou fluorofory. Molekuly vzorku jsou před aplikací na čip denaturovány. Výsledným vzorkem je tedy směs jednovláken DNA označených detekovatelnou látkou.
  3. Hybridizace vzorku s čipem: Po kontaktu s DNA čipem molekuly vzorku hybridizují s komplementárními sondami (molekulami na čipu). Čím větší je sekvenční podobnost (resp. komplementarita, viz nukleová báze) sond s molekulami vzorku, tím větší počet vodíkových můstků mezi nimi vznikne a tím pevnější je vazba.
  4. Omytí čipu: Po omytí zůstanou na čipu sondy, pevně přichycené kovalentní vazbou k jeho povrchu a molekuly vzorku přichycené dostatečně pevně na sondách. Molekuly vzorku přichycené na sondách nedostatečným počtem vodíkových můstků, tedy nedostatečně sekvenčně podobné, jsou odplaveny.
  5. Skenování čipu: Po Skenování čipu: Po excitaci laserem vyzáří molekuly barviva (způsob s použitím fluorescentního barviva) přítomné na molekulách vzorku přichycených na sondách světlo určité vlnové délky. Světlo vyzářené každou vlastností je detekováno.
  6. Zpracování výsledků: Předchozím postupem získáme informaci o tom, ke kterým sekvencím uchyceným na čipu existovaly komplementární sekvence ve vzorku. Podle intenzity vyzářeného světla lze určit i množství komplementárních molekul přítomných ve vzorku, běžně se ovšem pracuje pouze s relativním množstvím. Jsou tedy pouze porovnávána množství světla vyzářená jednotlivými vlastnostmi pro zjištění poměrů, v jakých byly jednotlivé sekvence ve vzorku přítomny. Zjištění absolutní koncentrace jednotlivých sekvencí ve vzorku je problematické. Charakter získaných dat vyžaduje pokročilé počítačové zpracování. Nejdříve je třeba digitální zpracování obrazu, získaná data jsou potom analyzovány metodami bioinformatiky.
Detail DNA čipu po dvoukanálovém experimentu. Různý poměr molekul z jednotlivých vzorků hybridizovaných na sondách způsobuje různé zabarvení světla vyzářeného z míst jednotlivých vlastností

Dvoukanálový experiment[editovat | editovat zdroj]

Popsaný postup může být upraven požitím směsi dvou vzorků (např. ze zdravých a rakovinných buněk či z buněk jednoho druhu v různých podmínkách) označených různými barvivy (typicky červeným a zeleným). Výsledkem je potom relativní informace o rozdílu v expresi genů mezi vzorky, lze tak jednoduše zjistit například které geny jsou vlivem nemoci v buňkách podexprimované a které nadexprimované. Tímto způsobem bude použit pouze jeden místo dvou čipů, což snižuje cenu. Nevýhodou je však horší porovnatelnost výsledků s jinými experimenty a také fakt, že pokud je jeden ze vzorků nekvalitní, znehodnotí i analýzu druhého, byť kvalitního vzorku.

Výroba[editovat | editovat zdroj]

Výroba DNA čipu nanášením kapek na podklad na University of Delaware

Existuje mnoho variant postupů při výrobě DNA čipů, dva základní přístupy jsou tyto:

  1. Nanášení kapek na podklad: Pomocí přesného robotického zařízení jsou na určená místa na podkladu postupně nanášeny mikroskopické kapky směsi obsahující vždy molekuly jednoho typu, čip tak vzniká postupně, jedna vlastnost za druhou. Tento přístup je vhodný na při potřebě delších oligonukleotidů.
  2. In situ syntéza oligonukleotidů: Tento princip výroby využívá fotolitografii. Celá podkladová destička je nejdříve zakryta inertním materiálem, ten je poté na požadovaných místech odkryt a destička je vnořena do směsi obsahující pouze nukleotidy jednoho druhu. Ty se po jednom přichytí na odkrytá místa. Destička je opět zakryta, odkryta na dalších místech dle plánu a ponořena do směsi s dalším nukleotidem. Takto jsou postupně syntetizovány celé požadované sekvence. Tento přístup je vhodný na čipy s kratšími oligonukleotidy.