Násobení

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Násobení je jedna ze čtyř základních početních operací v aritmetice. Násobení přirozených čísel představuje jejich opakované sčítání.


\begin{matrix}
  \underbrace{b+b+\cdots+b}\\{a}\\[-4ex]
\end{matrix} = \sum_{i=1}^{a}b = a \cdot b

a a b se nazývají činitelé. Výsledek, „a krát b“, se nazývá součin.

Například se zapisuje 3 · 4 pro 4 + 4 + 4. Tento zápis se čte „třikrát čtyři“.

Namísto 3 · 4 se někdy píše také 3 × 4, což bylo obvyklé zejména v minulosti, nyní se v matematice znak × používá speciálně pro kartézský součin množin. V počítačových programech nebo na kalkulačkách se často používá znak *. Znak × či x připojený bez mezery za číslo se v běžném textu či seznamech běžně používá pro označení počtu věcí či úkonů, například „2× máslo“ v soupisu nákupu nebo „pro výstup s kočárkem stiskněte 2ד. Při násobení proměnnou se zpravidla symbol násobení vynechává úplně, tedy píše se například (5x, xy).

Při násobení více nebo mnoha čísel se používá písmeno Π z řecké abecedy (případně symboly jemu podobné):

3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 = \prod_{i=1}^5 (2i+1) = 10\ 395

nebo také

\frac{3}{1} \cdot \frac{4}{2} \cdot \frac{5}{3} \cdot \; \dots \; \cdot \frac{n+2}{n} = \prod_{i=1}^n \frac{i+2}{i} = \frac{(n+1)(n+2)}{2}

Existuje i zvláštní případ násobení přirozených čísel - faktoriál

1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{i=1}^n i = n!

Opakované násobení stejných činitelů obvykle nahrazujeme umocňováním

2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^6 = 64

Opačná operace násobení je dělení

Pravidla[editovat | editovat zdroj]

V algebraickém tělese (např. \R a \Bbb Q) platí:

Odkazy[editovat | editovat zdroj]

Související články[editovat | editovat zdroj]