Inverzní prvek

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

V algebře značí inverzní prvek k prvku x vzhledem k operaci *, takový prvek y, pro který se x*y rovná neutrálnímu prvku. Prvek se nazývá invertibilní, existuje-li pro něj inverzní prvek.

Formální definice[editovat | editovat zdroj]

Buď S množina s binární operací *. Pokud e ∈ S je neutrální prvek (S,*) a pro nějaké ab ∈ S platí, že a * b = e, tak se a nazývá levá inverze prvku b a b se nazývá pravá inverze prvku a. Pokud je prvek x pravou i levou inverzí prvku y, nazývá se inverze prvku y, nebo též inverzním prvkem prvku y.

Prvek může mít několik levých či několik pravých inverzí. Může mít dokonce oboje zároveň.

Pokud je ale operace asociativní, platí, že má-li prvek levou a pravou inverzi, jsou si obě rovny a jsou dány jednoznačně.

Příklady[editovat | editovat zdroj]

Odkazy[editovat | editovat zdroj]

Související články[editovat | editovat zdroj]