Kvadratický průměr
Kvadratický průměr (také střední kvadratická hodnota nebo střední kvadratický průměr) je statistická veličina představující druhou odmocninu aritmetického průměru druhých mocnin daných hodnot.
Výpočet
[editovat | editovat zdroj]Matematický zápis výpočtu je následující ( představuje počet hodnot, jsou jednotlivé hodnoty):
V případě spojité funkce lze vypočítat kvadratický průměr neboli střední kvadratickou hodnotu v určitém intervalu pomocí integrálu:
Vlastnosti
[editovat | editovat zdroj]Kvadratický průměr je vždy nezáporný a větší nebo roven aritmetickému průměru. Rovnost nastává, právě když jsou všechny průměrované hodnoty stejné a nezáporné. To je důsledkem Cauchyovy-Schwarzovy-Buňakovského nerovnosti pro skalární součin.
Umocnění hodnot na druhou má za následek větší váhu hodnot vzdálenějších od nuly. Vzdáleně to připomíná výpočet váženého průměru.
Použití
[editovat | editovat zdroj]Diskrétní verze kvadratického průměru se používá například při výpočtu střední kvadratické odchylky, ta je kvadratickým průměrem odchylek.
Spojitý kvadratický průměr – střední kvadratická hodnota se používá rovněž ve statistice nebo fyzice, např. při výpočtu střední kvadratické rychlosti molekul plynu nebo při výpočtu efektivní hodnoty střídavého napětí nebo střídavého proudu.