Linearizace

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Linearizace (někdy také lineární aproximace) je nahrazení části křivky (nebo průběhu funkce) přímkou. Jinak řečeno, jedná se o aproximaci lineární funkcí (jinak také polynomem prvního řádu).

V případě funkce více proměnných se jedná nahrazení části obecné plochy rovinou.

V diferenciálním počtu představuje linearizace nahrazení diferenciální rovnice v určitém rozsahu hodnot lineární diferenciální rovnicí.

Důvodem užití linearizace obvykle bývá zjednodušení navazujících výpočtů.

Způsoby linearizace[editovat | editovat zdroj]

Metoda provedení linearizace závisí na důvodu jejího použití.

  • Pokud je cílem zjištění přibližné hodnoty funkce v blízkém okolí známého bodu, provádí se obvykle nahrazení funkce její tečnou ve známém bodu. (K určení rovnice tečny se užívá derivace.)

Příklad: Přibližný výpočet e0,01[editovat | editovat zdroj]

Úkolem je přibližně určit hodnotu funkce ( představuje Eulerovo číslo, základ přirozeného logaritmu) pro , přičemž je známá hodnota funkce v bodu () a dále je známá první derivace (), která je v bodě rovna .

Funkci nahradíme v blízkém okolí bodu tečnou, jejíž směrnice je určena první derivací. Rovnice tečny bude následující. (Viz také Taylorův polynom.)

Odtud již není problém vypočítat místo hodnoty pouze přibližnou hodnotu z rovnice tečny .

Pokud vypočtenou hodnotu 1,01 porovnáme s přesněji vypočtenou hodnotou , vidíme, že chyba provedeného přibližného odhadu je velmi nízká. (Viz také absolutní chyba a relativní chyba.)

Související články[editovat | editovat zdroj]