Matematické kyvadlo: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Řádek 22: Řádek 22:
== Reálné kyvadlo ==
== Reálné kyvadlo ==
{{viz též|Fyzikální kyvadlo}}
{{viz též|Fyzikální kyvadlo}}
Neuvažujeme-li pouze malé výchylky kyvadla jako v předchozím případě, je mnohem náročnější pohybovou diferenciální rovnici vyřešit. K jejímu řešení jsou potřeba [[eliptický integrál|eliptické integrály]] I. druhu
Neuvažujeme-li pouze malé výchylky kyvadla jako v předchozím případě, je mnohem náročnější pohybovou diferenciální rovnici vyřešit. K jejímu řešení jsou potřeba [[eliptické integrály|eliptický integrál]] I. druhu


: <math>F(\varphi , k) = \int_0^\varphi {1\over\sqrt{1-k^2\sin^2{u}}}\,du\,.</math>
: <math>K(k) = \int_0^{\pi/2} {1\over\sqrt{1-k^2\sin^2{u}}}\,du\,</math>


Kyvadlo v tomto případě není harmonický oscilátor. Periodu kmitání kyvadla lze vyjádřit v závislosti na úhlovém rozkmitu <math>\varphi_m</math> pomocí řady
pomocí nějž lze vyjádřit přesný vzorec pro periodu v závislosti na úhlovém rozkmitu <math>\varphi_m \in (0;\pi)</math>


: <math>T(\varphi_m) = 2\pi\sqrt{\frac{l}{g}}\left(1+\left(\frac{1}{2}\right)^2\sin^2\left(\frac{\varphi_m}{2}\right)+\left(\frac{1\cdot 3}{2\cdot 4}\right)^2\sin^4\left(\frac{\varphi_m}{2}\right) + ...\right)</math>.
:<math>T (\varphi_m) = 4\sqrt{\ell\over g}\,K\left( \sin{\varphi_m\over 2} \right).</math>

Kyvadlo už v tomto případě není harmonický oscilátor. Periodu kmitání kyvadla lze vyjádřit pomocí řady

: <math>T = 2\pi\sqrt{\frac{l}{g}}\left(1+\left(\frac{1}{2}\right)^2\sin^2\left(\frac{\varphi_m}{2}\right)+\left(\frac{1\cdot 3}{2\cdot 4}\right)^2\sin^4\left(\frac{\varphi_m}{2}\right) + ...\right)</math>.


Pokud uvažujeme nenulové [[tření]] při pohybu kyvadla, klesá maximální výchylka při kmitání [[Exponenciální funkce|exponenciálně]] v závislosti na čase.
Pokud uvažujeme nenulové [[tření]] při pohybu kyvadla, klesá maximální výchylka při kmitání [[Exponenciální funkce|exponenciálně]] v závislosti na čase.

Verze z 25. 3. 2013, 15:14

Matematické kyvadlo

Matematické kyvadlo je matematickým modelem kyvadla. U matematického kyvadla se zkoumá pouze hmotný bod zavěšený na tenkém vláknu zanedbatelné hmotnosti, zanedbává se odpor vzduchu při pohybu kyvadla i tření v závěsu a gravitační pole se považuje za homogenní. Matematické kyvadlo je mechanický oscilátor, tedy zařízení, které po dodání počáteční energie volně kmitá bez vnějšího působení. Při malých výchylkách (do asi ±5°) je průběh tohoto kmitání harmonický, lze jej tedy vyjádřit pomocí funkce sinus.

Matematický popis

Na hmotný bod působí jen tíhová síla a tahová síla vlákna, která ho udržuje stále ve stejné vzdálenosti od závěsu. Velikost výsledné síly je

,

kde je tíhové zrychlení a φ je úhel, o který je vlákno vychýleno z rovnovážné polohy. Diferenciální rovnice pro popis pohybu kyvadla je z 2. Newtonova pohybového zákona tedy

,

kde je délka vlákna. Pokud je maximální výchylka z rovnovážné polohy malá (viz přesné řešení dále), lze funkci sinus nahradit lineární funkcí

.

Diferenciální rovnice má proto podstatně jednodušší tvar (lineární homogenní 2. řádu)

Tato rovnice má partikulární řešení

,

kde je počáteční výchylka (předpokládáme nulovou počáteční rychlost) a je čas, což je pohybová rovnice harmonického oscilátoru s periodou

.

Je vidět, že periodu ovlivňuje pouze délka kyvadla a (místní) tíhové zrychlení, hmotnost závaží na ni samozřejmě nemá vliv.

Reálné kyvadlo

Související informace naleznete také v článku Fyzikální kyvadlo.

Neuvažujeme-li pouze malé výchylky kyvadla jako v předchozím případě, je mnohem náročnější pohybovou diferenciální rovnici vyřešit. K jejímu řešení jsou potřeba eliptický integrál I. druhu

pomocí nějž lze vyjádřit přesný vzorec pro periodu v závislosti na úhlovém rozkmitu

Kyvadlo už v tomto případě není harmonický oscilátor. Periodu kmitání kyvadla lze vyjádřit pomocí řady

.

Pokud uvažujeme nenulové tření při pohybu kyvadla, klesá maximální výchylka při kmitání exponenciálně v závislosti na čase.

Redukovaná délka

Délka matematického kyvadla, které se kývá stejně (tzn. má stejnou periodu) jako fyzické kyvadlo, se nazývá redukovaná délka fyzického kyvadla. Mají-li být periody stejné pak platí

,

kde představuje redukovanou délku kyvadla, je hmotnost tělesa, je vzdálenost závěsu od těžiště a je moment setrvačnosti tělesa vzhledem k ose rotace.

Reverzní kyvadlo

Reverzní kyvadlo.

Pokud naneseme na přímku, která je kolmá k ose otáčení a současně prochází těžištěm tělesa, redukovanou délku kyvadla, dostaneme bod . Tento bod se nazývá střed kyvu a má tu vlastnost, že těleso, zavěšené na ose procházející bodem má stejnou periodu, jako těleso zavěšené v bodě .


Je-li totiž moment setrvačnosti tělesa k ose jdoucí těžištěm a jeho moment setrvačnosti kolem rovnoběžné osy kyvu , pak redukovaná délka je

,

kde označuje vzdálenost těžiště od bodu .

Kýve-li se těleso kolem středu kyvu , platí podle Steinerovy věty

Pro redukovanou délku dostaneme

Z předchozích vztahů pak plyne

Redukovaná délka pro osu je tedy stejná jako pro původní osu .


Pokud je těleso zavěšeno v bodě , který je od bodu vzdálen o redukovanou délku , dostaneme tzv. reverzní (převratné) kyvadlo. Perioda převratného kyvadla je opět dána vztahem

.

Související články