Rozptyl (statistika)

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Rozptyl (též střední kvadratická odchylka, střední kvadratická fluktuace, variance nebo také disperze) se používá v teorii pravděpodobnosti a statistice. Je to druhý centrální moment náhodné veličiny.[1] Jedná se o charakteristiku variability rozdělení pravděpodobnosti náhodné veličiny, která vyjadřuje variabilitu rozdělení souboru náhodných hodnot kolem její střední hodnoty.

Rozptyl náhodné veličiny se označuje , , nebo .

Definice[editovat | editovat zdroj]

Rozptyl je definován jako střední hodnota kvadrátů odchylek od střední hodnoty. Odchylku od střední hodnoty, která má rozměr stejný jako náhodná veličina, zachycuje směrodatná odchylka .

Pro diskrétní náhodnou veličinu jej můžeme definovat vztahem

,

kde jsou hodnoty, kterých může náhodná veličina nabývat (s pravděpodobnostmi ) a je střední hodnota veličiny .

Je-li pravděpodobnost všech diskrétních hodnot stejná, pak se předchozí vztah zjednoduší na

kde n je počet prvků souboru.

Pro spojitou náhodnou veličinu definujeme rozptyl vztahem

,

kde je hustota pravděpodobnosti veličiny .

Vlastnosti[editovat | editovat zdroj]

Pro rozptyl součinu náhodné veličiny a konstanty platí

Rozptyl náhodné veličiny je invariantní vůči posunu , tedy

Rozptyl součtu i rozdílu náhodných veličin je roven

,

kde značí kovarianci veličin a .

Pokud jsou náhodné veličiny nezávislé, jejich kovariance je nulová, a tedy rozptyl součtu (rozdílu) je roven součtu rozptylů jednotlivých náhodných veličin.

Obdobná tvrzení platí také pro rozptyl součtu většího počtu náhodných veličin.

Pro výpočet rozptylu se často používá následující vztah

Příklad u kostky[editovat | editovat zdroj]

Mějme kostku a náhodnou veličinu , která přiřadí každému z šesti možných jevů takové číslo, kolik puntíků je v daném jevu na horní straně kostky (čísla 1 až 6). Máme 6 jevů s pravděpodobností a střední hodnota (průměr) je 3,5. Kvadrát rozptylu veličiny lze pak podle vztahů výše vypočítat jako

Související články[editovat | editovat zdroj]

Reference[editovat | editovat zdroj]

  1. OTIPKA, Petr; ŠMAJSTRLA, Vladislav. PRAVDĚPODOBNOST A STATISTIKA [online]. Ostrava: Vysoká škola báňská - Technická univerzita Ostrava, rev. 2013-11-14, [cit. 2016-05-31]. Kapitola Náhodná veličina. Dostupné online.