Kvadratická rovnice

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Jako kvadratická rovnice se v matematice označuje algebraická rovnice druhého stupně, tzn. rovnice o jedné neznámé, ve které neznámá vystupuje ve druhé mocnině (x²). V základním tvaru vypadá následovně:

Zde jsou a, b nějaká reálná čísla, tzv. koeficienty této rovnice, x je neznámá. Koeficient a je vždy různý od nuly, neboť pro a = 0 se jedná o lineární rovnici. Často se kvadratická rovnice vyjadřuje v základním (normovaném) tvaru, kde a = 1. Do tohoto tvaru lze převést každou kvadratickou rovnici jejím vydělením koeficientem a.

Jednotlivé členy mají také svá pojmenování: ax2 je kvadratický člen, bx je lineární člen a c absolutní člen.

Řešení rovnice[editovat | editovat zdroj]

Při řešení rovnice se nejprve vypočítá tzv. diskriminant . Podle jeho hodnoty pak mohou nastat tři případy:

  • D = 0, tehdy má rovnice jedno (tzv. dvojnásobné) řešení . Původní rovnici je možno zapsat ve tvaru .
  • D > 0, tehdy má rovnice dvě různá reálná řešení . Rovnici je možno zapsat ve tvaru .
  • D < 0, tehdy rovnice nemá v reálném oboru řešení. Jejím řešením jsou dvě komplexně sdružená čísla . Rovnici je opět možné napsat ve tvaru , ovšem kořeny x1,2 jsou nyní komplexní čísla.

Příklad[editovat | editovat zdroj]

Komplexní koeficienty[editovat | editovat zdroj]

V nejobecnějším případě jsou také koeficienty komplexní čísla. Řešení získáme opět výpočtem diskriminantu a jeho druhé odmocniny v oboru komplexních čísel. Vzorec řešení je stejný jako v případě reálných koeficientů. . Výsledkem jsou obecně dvě komplexní čísla, mezi nimiž nemusí být žádný vztah. Rovnici je opět možné napsat ve tvaru . V případě nulového diskriminantu obě řešení splývají v jedno komplexní číslo a rovnice má tvar .

Další rovnosti[editovat | editovat zdroj]

Pro kořeny rovnice platí následující rovnosti (jedná se o speciální případ tzv. Vièteho vztahů):

Geometrický význam[editovat | editovat zdroj]

Levá strana rovnice (ax² + bx + c) popisuje parabolu s osou rovnoběžnou s osou y. Pokud je a>0, je parabola otevřená směrem nahoru (má vrchol dole), při a<0 je otevřená dolů (vrchol je nahoře). Řešení kvadratické rovnice odpovídá hledání průsečíků této paraboly s osou x (pravá strana z rovnice dělá výraz y=0). Podle polohy paraboly mohou nastat tři případy:

  • Parabola leží celá nad (pro a>0) nebo celá pod (pro a<0) osou x. To nastane v případě, že D<0. Tehdy parabola nemá žádný průsečík s osou x, což znamená, že kvadratická rovnice nemá v reálných číslech řešení. Kořeny rovnice jsou 2 komplexně sdružená komplexní čísla.
  • Vrchol paraboly leží právě na ose x. To nastane v případě, že D=0. Tehdy se parabola osy x dotýká, tzn. má s ní jeden společný bod (právě vrchol paraboly), tzn. kvadratická rovnice má jedno řešení.
  • V ostatních případech osa x parabolu protíná ve dvou bodech. To nastane v případě, že D>0. Tehdy existují dva průsečíky osy x s parabolou, tzn. rovnice má dvě různá řešení.

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]