Kanonický tvar
V matematice a informatice se pojmem kanonický tvar (případně kanonická forma, normální tvar nebo normální forma) označuje forma objektu, ve které může být objekt jednoznačně prezentován.
Definice[editovat | editovat zdroj]
Kanonický tvar musí mít dvě základní vlastnosti:
- Každý objekt musí mít právě jeden kanonický tvar.
- Každé dva objekty, které mají stejný kanonický tvar, musí být stejné (vzhledem k nějaké ekvivalenci).
Z matematického hlediska tedy předpokládáme, že máme nějakou množinu objektů, které nás zajímají, a nějakou na ní existující relaci ekvivalence. Definici konkrétního kanonického tvaru pro objekty této množiny pak vytvoříme tím, že z každé třídy ekvivalence vybereme jednoho reprezentanta jakožto kanonický tvar všech prvků příslušné třídy.
Kanonický tvar může být v některých případech jen otázkou formální konvence, jindy může být existence kanonického tvaru zjevná, někdy však zjevná není a fakt, že kanonický tvar existuje je hlubokým matematickým výsledkem.
Například polynomy se často zapisují od vyšších mocnin k nižším: spíše než se používá zápis . Lze říci, že zápis je kanonickým tvarem a jelikož se na tento kanonický tvar převede jak , tak např. , je ihned vidět, že tyto polynomy jsou shodné.
Oproti tomu např. Jordanova normální forma matice je důležitou větou lineární algebry.