Bezesporná teorie

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Bezesporná teorie (také konzistentní teorie) je označení používané v matematické logice pro formální teorii, která neobsahuje spor; v opačném případě se používá označení sporná teorie.

Definice[editovat | editovat zdroj]

Řekneme, že teorie je sporná, je-li v ní dokazatelná nějaká sentence (tj. uzavřená formule) i její negace. Není-li teorie sporná, říkáme, že je bezesporná neboli konzistentní. Za spor v teorii T považujeme každou formuli, která je v T dokazatelná spolu se svojí negací.

Vlastnosti[editovat | editovat zdroj]

Následující vlastnosti teorie T jsou ekvivalentní (v logice s rovností):

Tedy teorie obsahující spor je v „klasické“ logice nejsilnější teorií (ve smyslu velikosti množiny dokazatelných formulí), neboť dokazuje každé tvrzení. Dále platí:

Relativně bezesporná teorie[editovat | editovat zdroj]

Je-li T teorie a S její rozšíření, pak říkáme, že S je relativně bezesporná vůči T, pokud platí, že je-li T bezesporná, pak je bezesporná i S.

Tento pojem se často používá u rozšíření ZF a ZFC, neboť díky Goedelovým větám o neúplnosti je nemožné dokázat jejich bezespornost.

Příklad: Studiem konstruovatelných množin lze ukázat, že je-li ZF bezesporná, pak je bezesporná i ZF+CH. Bezespornost ZF však nelze dokázat. Proto říkáme, že ZF+CH je relativně bezesporná vzhledem k ZF.

Související články[editovat | editovat zdroj]