Koeficient špičatosti

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Koeficient špičatosti (excesu) je charakteristika rozdělení náhodné veličiny, která porovnává dané rozdělení s normálním rozdělením pravděpodobnosti.

Koeficient špičatosti se obvykle označuje \gamma_2.

Definice[editovat | editovat zdroj]

Koeficient špičatosti je definován vztahem

\gamma_2 = \frac{\mu_4}{\sigma^4} - 3 = \frac{\operatorname{E}[X-\operatorname{E}(X)]^4}{\left(\operatorname{var}\,X\right)^2} - 3,

kde \mu_4 je čtvrtý centrální moment, \sigma je směrodatná odchylka, \operatorname{E}(X) označuje střední hodnotu a \operatorname{var}\,X je rozptyl.

Vlastnosti[editovat | editovat zdroj]

Normální rozdělení má špičatost nula. Kladná špičatost značí, že většina hodnot náhodné veličiny leží blízko její střední hodnoty a hlavní vliv na rozptyl mají málo pravděpodobné odlehlé hodnoty. Křivka hustoty je špičatější, nežli u normálního rozdělení. Záporná špičatost značí, že rozdělení je rovnoměrnější a jeho křivka hustoty je plošší nežli u normálního rozdělení.

Špičatost rozdělení nezávisí na lineární transformaci náhodné veličiny, je tedy např. stejná pro všechna normální rozdělení.

Výběrový koeficient špičatosti[editovat | editovat zdroj]

Výběrový koeficient špičatosti je definován vzorcem

g_2 = \frac{m_4}{m_2^2} = n\frac{\sum_{i=1}^n (x_i - \overline{x})^4}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 \right)^2},

kde \overline{x} je výběrový průměr, m_2 je výběrový rozptyl a m_4 je čtvrtý výběrový centrální moment.

Tento odhad je vychýlený. Méně vychýlené odhady dostaneme, když místo výběrových centrálních momentů použijeme nevychýlené odhady centrálních momentů:[1]


\begin{align}
G_2 = \frac{M_4}{M_2^2} &= \frac{(n-1)}{(n-2)(n-3)}\left((n+1)g_2+6\right) \\
b_2 = \frac{m_4}{M_2^2} &= \left(\frac{n-1}{n}\right)^2g_2 - 3
\end{align}

Pro rozptyly těchto odhadů platí \operatorname{var}\,b_2 < \operatorname{var}\,g_2 < \operatorname{var}\,G_2.

Reference[editovat | editovat zdroj]

  1. Estimating and Comparing Kurtosis and Skewness from and Arbitrary Population [online]. Michigan SAS Users Group, [cit. 2011-07-18]. Dostupné online. (anglicky)