Z-transformace

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Z-transformace je název několika matematických transformací.

Funkce komplexní proměnné[editovat | editovat zdroj]

Z-transformace (jednostranná, unilaterální) posloupnosti je definována

,

kde je komplexní proměnná. Množina hodnot , pro něž sumace konverguje, se nazývá oblast konvergence. Lze ukázat, že jestliže sumace konverguje pro danou posloupnost v bodě , pak konverguje v každém bodě , pro který platí . Oblast konvergence Z-transformace je tedy , kde je dáno chováním posloupnosti pro .

Inverzní Z-transformace je dána vztahem:

kde je jednoduchá uzavřená a kladně orientovaná křivka ležící v oblasti konvergence a obklopující počátek.

S použitím Z-transformace se setkáme hlavně při řešení diferenčních rovnic, při hledání vlastností a realizaci systémů pracujících v diskrétním čase (např. digitální signální procesor).

Statistika[editovat | editovat zdroj]

Fisherova z-transformace[editovat | editovat zdroj]

Je-li r výběrový koeficient korelace mezi dvěma náhodnými vektory X a Y, má Fisherova Z-transformace tvar

.

Pokud oba náhodné vektory X i Y pocházejí z normálního rozdělení, má takto vzniklá náhodná veličina Z přibližně normální rozdělení.

Transformace na z-skóry[editovat | editovat zdroj]

Jako z-transformace se ve statistice také označuje lineární transformace souboru hodnot kvantitativního (číselného) znaku. Jejím cílem je dosáhnout u transformovaného znaku průměru rovného nule a směrodatné odchylky rovné jedné. Hodnoty po transformaci se pak označují jako z-skóry.

Je-li průměr souboru hodnot roven μ a směrodatná odchylka rovna σ, má z-transformace tvar

,

kde x jsou původní hodnoty a y transformované hodnoty.

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]