Přeskočit na obsah

Lagrangeova věta (teorie grup): Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Řádek 34: Řádek 34:


== Důsledky ==
== Důsledky ==
Řád každého prvku <math> a\in G </math>, neboli nejnižžší číslo ''n'', pro které <math>a^n=e</math>, je dělitel řádu ''G'', neboť ''a'' generuje cyklickou podgrupu s týmž řádem. Podle Lagrangeovy věty ''n'' dělí řád ''G''. Lagrangeova věta je silnějším tvrzením než [[Eulerova věta (teorie čísel)|věta Euler-Fermatova]]. Množina zbytkových tříd modulo ''n'' celých čísel nesoudělných s ''n'' tvoří s operací násobení grupu, která má neutrální prvek ''e'' = 1 a řád právě <math>\varphi (n)</math>, což je [[Eulerova funkce]]. Podle Lagrangeovy věty má každý prvek ''g'' nějaký řád ''k'', který je dělitelem čísla <math>\varphi (n)</math>. Odtud plyne
Řád každého prvku <math> a\in G </math>, neboli nejnižžší číslo ''n'', pro které <math>a^n=e</math>, je dělitel řádu ''G'', neboť ''a'' generuje [[Cyklická grupa|cyklickou podgrupu]] s týmž řádem. Podle Lagrangeovy věty ''n'' dělí řád ''G''. Lagrangeova věta je silnějším tvrzením než [[Eulerova věta (teorie čísel)|věta Euler-Fermatova]]. Množina [[Aritmetika modulo n|zbytkových tříd modulo ''n'']] celých čísel nesoudělných s ''n'' tvoří s operací násobení grupu, která má neutrální prvek ''e'' = 1 a řád právě <math>\varphi (n)</math>, což je [[Eulerova funkce]]. Podle Lagrangeovy věty má každý prvek ''g'' nějaký řád ''k'', který je dělitelem čísla <math>\varphi (n)</math>. Odtud plyne


<math>\varphi (n)=kd</math>, kde <math>d\in\mathbb{Z}</math>
<math>\varphi (n)=kd</math>, kde <math>d\in\mathbb{Z}</math>

Verze z 1. 5. 2013, 21:41

Lagrangeova věta je základní tvrzení z teorie grup, jehož důsledkem je, že řád každého prvku či podgrupy dělí řád grupy. To znamená, že například grupa řádu 15 může mít prvky řádu 1, 3, 5 a 15, avšak nikoliv třeba 7. Věta nese jméno význačného matematika, Josepha Louise Lagrange.

Přesné znění

Pro grupu G a její podgrupu H platí:

, kde |X| značí řád grupy X a [G:H] index grupy H v G.

Důkaz

Nejprve ukážeme, že levé cosety tvoří dohromady pro rozklad množiny G. Protože , nepochybně levé cosety obsahují všechny prvky G. Abychom ukázali, že neobsahují žádný prvek dvakrát, předpokládejme naopak pro nějaké . Jinými slovy pro nějaká musí být . Vynásobením na pravé straně prvkem dostaneme . Pro jednoduchost provedeme substituci . Vzhledem k definici podgrupy , a proto

.

, neboť rovněž , a tudíž každý prvek v yH je obsažen v xH. Symetrickým postupem bychom získali , a proto . Z čehož plyne, že cosety gH tvoří rozklad G.

Abychom ukázali, že řád všech cosetů je totožný, najdeme bijektivní zobrazení f z H na xH pro . Definujme f rovnicí

  • Důkaz injektivity: Předpokládejme .

. Obě strany vynásobíme zleva prvkem

Nechť značí celkový počet všech (ať už levých nebo pravých) cosetů. Jak už jsme ukázali, cosety tvoří rozklad množiny G a každý z nich má tentýž řád |H|. Z těchto úvah plyne .

QED.

Důsledky

Řád každého prvku , neboli nejnižžší číslo n, pro které , je dělitel řádu G, neboť a generuje cyklickou podgrupu s týmž řádem. Podle Lagrangeovy věty n dělí řád G. Lagrangeova věta je silnějším tvrzením než věta Euler-Fermatova. Množina zbytkových tříd modulo n celých čísel nesoudělných s n tvoří s operací násobení grupu, která má neutrální prvek e = 1 a řád právě , což je Eulerova funkce. Podle Lagrangeovy věty má každý prvek g nějaký řád k, který je dělitelem čísla . Odtud plyne

, kde

Příbuzná tvrzení

Lagrangeova věta dává nutnou podmínku pro řády podgrup (i prvků) grupy, nezaručuje ale jejich existenci. Naopak Sylowovy věty na základě řádu grupy zaručují existenci jistých podgrup v dané grupě - dají se tedy brát jako protipól Lagrangovy věty.

Související články