Bainit

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
slitiny železa a uhlíku
Bainit
fáze slitiny železo–uhlík
mikrostruktury
podle způsobu výroby
nelegované až středně legované
vysocelegované

Bainit je jehlicovitá mikrostruktura, kterou lze nalézt v uhlíkových ocelích, a která se tvoří v teplotním intervalu cca 250–550 °C.[1][2]

Jako první ji popsali E. S. Davenport a Edgar Bain jako jednu ze struktur rozpadu austenitu při ochlazování z teploty Ac3 resp. Acm. Davenport a Bain mikrostrukturu původně popsali jako velmi podobnou popuštěnému martenzitu.

Jemná nelamelární struktura bainitu obsahuje cementit s feritickými oblastmi s vysokou koncentrací dislokací, které ferit zpevňují.[3]

Teplotní interval pro formaci bainitu (mezi 250–550 °C) je stejný jako pro zformování perlitu i martenzitu. Vznik bainitické struktury je podmíněn izotermickým kalením s kalicí rychlostí vyšší než pro vznik perlitu, ale nižší než pro vznik martenzitu – za předpokladu stejného chemického složení oceli. Většina legujících prvků snižuje teplotu potřebnou pro dosažení vzniku bainitu, např. uhlík je nejefektivnější.[1][2]

Mikrostruktury martenzitu a bainitu jsou si velmi podobné, protože obě mikrostruktury vznikají za velmi obdobných podmínek. Morfologické rozdíly existují a jsou zjistitelné jen při použití elektronového mikroskopu. Při pozorování světelným mikroskopem se bainitická struktura jeví tmavší než martenzitická z důvodu nižší odrazivosti.

Protože tvrdost bainitu je vyšší než u perlitu ale nižší u martenzitu, nevyžaduje bainitická mikrostruktura žádné následné tepelné zpracování po bainitickém kalení.[4]

Historie[editovat | editovat zdroj]

Ve dvacátých letech Davenport a Bain objevili novou mikrostrukturu oceli, kterou nejprve nazývali martenziticko-troostitickou, protože byla přechodem mezi nízkoteplotním martenzitem a troostitem.[5] Objevená struktura byla pojmenována Bainovými kolegy v U.S. Steel bainitem.[6][7] Název se však dostal do vědeckého povědomí až později, v roce 1947.[5] Bain a Davenport si také všimli existence dvou odlišných forem bainitu, horní bainit, který se formuje při vyšší teplotě a spodní bainit, který vzniká blízko martensitické teploty.[5]

Vznik struktury[editovat | editovat zdroj]

Diagram anizotermického rozpadu austenitu; Červené křivky znázorňují rychlost ochlazování: při (1) vzniká martenzit, při (2) bainit a při (3) fertiticko-perlitická struktura

Při teplotě 900 °C je nízkouhlíková ocel austenitizována (tj. vnitřní strukturou je austenit). Pod teplotou Ac3 (resp. Acm pro nadeutektoidní oceli) se austenit začne rozpadat. Při eutektoidní teplotě cca 727 °C se austenit stává termodynamicky nestabilním a při rovnovážných podmínkách – popsaných binárním diagramem železo-uhlík – se rozpadá eutektoidní reakcí na perlit (tuhý roztok feritu a cementitu). To platí pro nekonečně pomalé ochlazování. V případě vyšších ochlazovacích rychlostí, je nutné vzít v úvahu vliv kinetiky termodynamické soustavy při strukturní transformaci. Díky tomu lze dosáhnout jiných struktur než fázových (ferit, cementit, perlit) a to zejména martenzitickou strukturu ale i bainitickou strukturu. Transformace se popisuje v např. v diagramu anizotermického rozpadu austenitu.

Na obrázku křivka (1) znázorňuje vysokou (nadkritickou) rychlost ochlazování – kalení – při níž se austenit transformuje ve ferit přesycený uhlíkem za podmínek kdy uhlík nemůže volně difundovat, tj. martenzit. Atomová mřížka austenitu by se transformovala z kubické plošně středěné na kubickou prostorově středěnou feritu za předpokladu dostatku času. V případě rychlého ochlazení se ferit však uspořádá s uhlíkem do prostorově středěné tetragonální atomové mřížky. Intersticiálně uspořádaný uhlík způsobí vnitřní pnutí v tomto uspořádání díky níž je sice ocel tvrdší a pevnější, ale zároveň i křehčí. Složení martenzitu je odvozené od složení austenitu. Při pomalejší rychlosti ochlazování jako u křivky (2) může uhlík snadněji difundovat až do teploty 600 °C, potom lze soustavu ochlazovat rychleji a místo feriticko-perlitické struktury se a vytvoří bainit. Při velmi nízké rychlosti ochlazování, podle křivky (3), bude dosažena feriticko-perlitická struktura jako podle binárního rovnovážného diagramu v závislosti na chemickém složení oceli.[8]

Bainit se nachází mezi martenzitickou a feriticko-perlitickou oblastí, kdy difuzní pochody železa sice jsou omezeny, ale termodynamický mechanismus nemá dostatečný potenciál pro transformaci na martenzit. Na rozdíl od perlitu, ve kterém ferit s cementitem vzniká společně, bainit vzniká transformací z austenitu přesyceného uhlíkem (podobně jako martenzit) s postupnou difuzí uhlíku a precipitací karbidů. Další rozdíl je možné spatřit mezi tzv. spodním bainitem, který se formuje blízko teploty počátku martenzitické přeměny[pozn. 1] – tj. za nižších teplot, a tzv. horním bainitem, který se formuje za vyšších teplot, pod feriticko-perlitickou oblastí. Rozdílnost struktur vychází z rychlosti difuze uhlíku při teplotě vzniku bainitu. Při vyšší teplotě uhlík difunduje rychleji od nově se formujícího feritu a karbidů ze zbytkového austenitu přesyceného uhlíkem do feritické oblasti bez karbidů. Při nižší teplotě uhlík obtížně difunduje a tvoří více precipitátů než feritu.

Existují dvě protichůdné teorie vzniku bainitické mikrostruktury, tzv. teorie přesunů[pozn. 2] a teorie difuze.[pozn. 3]

Teorie přesunů[editovat | editovat zdroj]

Teorie přesunů je jedna z teorií mechanismu formování bainitu, kdy nastane smykové přetvoření jako v případě vzniku martenzitu. Přetvoření způsobí uvolnění napětí, což se potvrzuje orientací vazeb přítomných v bainitické mikrostruktuře.[3] Podobný efekt uvolnění napětí lze pozorovat v transformacích, které však nejsou považovány za čistě martenzitické. Uvolnění napětí v bainitu lze chápat jako invariantní rovinnou deformaci s rozsáhlými smykovými složkami. Vznik karbidických fází (cementitu) mezi feritickými deskami se objevuje pouze jako výsledek difuzních procesů.

Teorie difuze[editovat | editovat zdroj]

Teorie difuze bainitické přeměny je založena na difuzi malého rozsahu na počátku transformace. Náhodně a neusměrněně teplotně aktivované atomy skokově řídí vznik a vazby se pak sestavují opětovnou difuzí. Tento mechanismus není však schopný popsat ani tvar ani povrchový reliéf způsobený banitickou přeměnou.[3]

Nedokončená bainitická přeměna[editovat | editovat zdroj]

Již raný výzkum bainitu odhalil, že při jisté dané teplotě se určité množství austenitu transformuje v bainit a zbytek se rozpadne po delší době na perlit. A to i přesto, že dokončení transformace austenitu na perlit lze dosáhnout i při vyšších teplotách, kdy austenit je stabilní. Lze tedy uvažovat, že banitický ferit se vzniká transformací spolu s uhlíkem, který je vylučován okolním austenitem. Tím je zajištěna termodynamická stabilita proti další transformaci.[9] Aby bylo možné přeměnit větší množství austenitu na bainit, je nutné snížit teplotu a tím zvýšit hybnou sílu termodynamické reakce.

Morfologie[editovat | editovat zdroj]

Bainit se typicky jeví jako jehlicovitý agregát feritových desek oddělených zbytkovým austenitem, martenzitem nebo cementitem.[10] Zatímco feritové desky se jeví samostatnými při zkoumání dvourozměrného řezu, jsou ve skutečnosti vzájemně propojeny v třidimenzionálně – obyčejně v čočkovité či jehlicovité – morfologii. Klínový tvar jehlic vzniká při růstu zrna se silnější stranou v místě vzniku.

Tloušťka feritických desek se zvyšuje s teplotou, při které dochází k přeměně.[11] Modely neuronových sítí naznačují, že se nejedná o přímý účinek teploty jako takové, ale spíše důsledek teplotní závislosti hybné síly potřebné pro transformaci zbytkového austenitu kolem feritických desek.[11] Proto při podchlazení z vyšších teplot, termodynamická hybná síla způsobuje snížení rychlosti nukleace zrn. Tím je umožněno jednotlivým deskám dosáhnout při růstu velikost větší než je fyzicky dostupný prostor – omezený růstem ostatních desek. Desky jsou pak v okolním austenitu elasto-plasticky deformovány, což vyvolává napětí ve struktuře a to vede na vyšší pevnost a resistenci proti růstu zrn ze zbytkového austenitu.

Horní bainit[editovat | editovat zdroj]

Tzv. horní bainit se formuje při teplotě 400–550 °C se strukturou jehlicovitých útvarů. Tyto útvary obsahují laťky feritu, které jsou přibližně rovnoběžné, a které vykazují vazbu k okolnímu austenitu podle Kurdjumova-Sachse. Účinek této vazby se snižuje se snižující se teplotou při transformaci. Feritické útvary obsahují méně než 0,03 % uhlíku, což způsobuje setrvání austenitu přesyceného uhlíkem v jejich okolí.[1]

Množství feritu, které vzniká v jehlicích je závislé na množství uhlíku v oceli. Nízkouhlíkové oceli obsahují nesouvislé vrstvičky nebo drobné částečky cementitu mezi jehlicemi. U vysokouhlíkových ocelí jsou vrstvy kontinuální podél přilehlých jehlic.[1]

Dolní bainit[editovat | editovat zdroj]

Dolní bainit, který vzniká při teplotě 350–400 °C, má více acikulární formu než horní bainit. U dolního bainitu se nevyskytuje takové množství hran o malých úhlech mezi jehlicemi. Přirozená rovina růstu feritu se také posouvá z <111> k <110>[pozn. 4] v závislosti na klesající teplotě při transformaci.[1] Zrna cementitu vznikají na rozhraní mezi feritem a austenitem.

Odkazy[editovat | editovat zdroj]

Poznámky[editovat | editovat zdroj]

  1. teplota počátku martenzitické přeměny se v odborné literatuře často označuje jako teplota martenzit start – s označením Ms
  2. anglicky: Displacive Theory
  3. anglicky: Diffusive Theory
  4. tzv. Millerovy indexy pro označení směru rovin

Reference[editovat | editovat zdroj]

V tomto článku byl použit překlad textu z článku Bainite na anglické Wikipedii.

  1. a b c d e Honeycombe, RWK(1981). Steels: Microstructure & Properties. 
  2. a b Bainitic Steels: Part One [online]. Key to Metals AG, rev. 2005-01, [cit. 2013-12-22]. Dostupné online. (anglicky) 
  3. a b c Durand-Charre, Madeleine(2004). Microstructure of Steels & Cast Irons. Springer. 
  4. Davis, J.R.(1996). ASM Handbook on Carbon and Alloy Steels. ASM International. 
  5. a b c Bhadeshia, H.K.D.H(2001)."Chapter 1: Introduction", Bainite in steels. Institute of Materials. 
  6. Smith, Cyril Stanley(1960). A History of Metallography. University of Chicago Press, 225. 
  7. AUSTIN, James B. Edgar Collins Bain — September 14, 1891 – November 27, 1971 — A Biographical Memoir at the National Academy of Sciences [online]. National Academy of Sciences, 1978, [cit. 2011-07-22]. S. 32. Dostupné online. (angličtina) 
  8. (1992)"10", Phase Transformations In Materials. Prentice-Hall, 408–409. ISBN 0-13-663055-3. 
  9. Zener, C (1946).  "Kinetics of the decomposition of austenite". Transactions of the American Institute of Mining and Metallurgical Engineers 167: 550–595. 
  10. Bhadeshia, H.K.D.H(2001)."Chapter 3:Bainitic ferrite", Bainite in steels. Institute of Materials, 19–25. 
  11. a b Singh, S.B.; Bhadeshia, H.K.D.H. (1998).  "Estimation of Bainite Plate-Thickness in Low-Alloy Steels". Materials Science and Engineering A 245 (1): 72–79. doi:10.1016/S0921-5093(97)00701-6. 

Literatura[editovat | editovat zdroj]

  • HLUCHÝ, Miroslav; MODRÁČEK, Oldřich; PAŇÁK, Rudolf. Strojírenská technologie. lektoři Dr. Otakar Bothe a Ing. Ladislav Němec. 3. vyd. Svazek 2. Praha : Scientia, 2002. 173 s. ISBN 80-7183-265-0. S. 83–84.  

Externí odkazy[editovat | editovat zdroj]