Supravodič

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Supravodivý magnet

Supravodič je kovový drát, slitina kovu nebo sloučenina, která vede elektrický proud bez odporu, jestliže jeho teplota klesne pod kritickou teplotu (TC). Odpor je nežádoucí, protože způsobuje ztrátu energie proudící v materiálu.

Vývoj výzkumu[editovat | editovat zdroj]

Supravodivost je známá téměř sto let a za tuto dobu se povedlo vědcům vyrobit jak supravodiče I. typu, tak i supravodiče II. typu, které jsou výrazněji ekonomičtější a ve většině směrů lepší. Supravodivost objevil H.K. Onnes, při experimentech s rtutí za velmi nízkých teplot.

Supravodiče I. typu, které nazýváme měkké supravodiče a které byly prozkoumány jako první, jsou kovy a jejich přímé slitiny. Supravodivost u tohoto typu ale nastává až při teplotách blízko absolutní nule, proto je nutné je chladit kapalným heliem. Zkapalňování helia je však poměrně nákladné.

Supravodiče II. typu stačí chladit kapalným dusíkem, který je o mnoho levnější. Proto znamenají supravodiče II. typu a z toho vyplývající vysokoteplotní supravodiče HTS materiál 21. století. Nejvyšší teplota, jaká je (prozatím) u HTS dosažena je 138 K (-135 °C). Tímto supravodičem je (Hg0,8Tl0,2)Ba2Ca2Cu3O8,33. Výroba supravodiče je poměrně snadná, ale složitější je výroba dlouhých drátů, které jsou potřeba pro aplikace.

Pro dosahování nízkých teplot se využívají dvoufázové metody chlazení - odpařování kapalin a rozpouštění 3He v 4He. Rozpouštění je dnes jednou z nejpoužívanějších metod. Dosahuje se u ní teploty v řádu mK. Další metodou je Boseova – Einsteinova kondenzace. Tato metoda je známá již několik desetiletí, ale jenom ve formě teoretické. Praktické zkoušení této metody trvá něco kolem deseti let. Ale znamenalo to přelom v dosahování nízkých teplot.

Využití[editovat | editovat zdroj]

Supravodiče se užívají například u urychlovačů částic, u přenosu energie a elektronických součástek s rychlým přechodem SQUID, elektrických motorů, jsou také využívány armádou u E-bomb, vlak MagLev také používá supravodivou levitaci nebo u nukleární magnetické rezonance.

Nukleární magnetická rezonance (NMR) má významné postavení zejména v chemii, protože umožňuje poměrně rychle zjistit strukturu zkoumané látky. Jiným příkladem použití NMR je ve zdravotnictví, kde se používá trochu jiný systém NMR, který je nazván zobrazování magnetické rezonance - MRI. Je to oblast, kde supravodiče mohou sloužit ve funkci zachránce.[zdroj?] Hlavní součástkou je tu již jednou zmiňovaná SQUID (supravodivé kvantové interferenční zařízení). Jeho další využití je směřováno do oblasti vyhledávání minerálů a ropy. Stalo se i nezbytnou součástí zařízení na nedestruktivní vyhledávání jemných trhlin v jaderném strojírenství, letectví a automobilovém průmyslu.

Užití supravodičů jsou už dnes dosti rozšířená, ale většinou pouze v testovacím provozu. Dnes se supravodiče stále užívají jen tam, kde je to nezbytně nutné či tam, kde je to ekonomicky výhodné.

Odkazy[editovat | editovat zdroj]

Literatura[editovat | editovat zdroj]

  • Kratochvíl B., Švorčík V., Vojtěch D: Úvod do studia materiálů, Praha, 2005, strana 103 - 106
  • Kolektiv autorů : Elektrotechnický magazín ETM - Supravodivost a její využití na počátku 21. století., Roč. 13, č. 6 (2003), strana. 26-28
  • Krasl M., Tesařová M., Valečka M.: Supravodivé materiály pro vinutí elektrických strojů, Plzeň, 2003
  • Jirsa, Miloš : Vysokoteplotní supravodiče, Praha, 2004
  • J. Šavel :Elektrotechnologie, Praha, 1999
  • Kolektiv autorů: Journal American Ceramic Society, č. 83, článek Rob Cava : Oxide Superconductors, strana 5-28

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]