Komplexní rovina: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Jurp (diskuse | příspěvky)
m řádkování
Řádek 14: Řádek 14:


Při násobení je argument součinu roven součtu argumentů jednotlivých činitelů a [[absolutní hodnota]] výsledku je rovna součinu absolutních hodnot násobených čísel. To geometricky odpovídá přímé podobnosti - otočení okolo počátku složenému se stejnolehlostí se středem v počátku.
Při násobení je argument součinu roven součtu argumentů jednotlivých činitelů a [[absolutní hodnota]] výsledku je rovna součinu absolutních hodnot násobených čísel. To geometricky odpovídá přímé podobnosti - otočení okolo počátku složenému se stejnolehlostí se středem v počátku.



== Související články ==
== Související články ==

Verze z 29. 5. 2015, 12:37

Komplexní rovina (často též Gaussova rovina) je v matematice způsob zobrazení komplexních čísel. Ve frankofonní literatuře bývá někdy označována jako Argandova rovina, Cauchyho rovina nebo Argandův diagram.

Na osu x se vynáší reálná část komplexního čísla z, tzn. , a proto je tato osa označována jako reálná.

Na osu y se vynáší imaginární část komplexního čísla z, tzn. , a proto je tato osa označována jako imaginární.

Komplexní rovinu, do níž zahrnujeme i nevlastní bod , označujeme jako rozšířenou rovinu (komplexních čísel). Tato zúplněná komplexní čísla však názorněji zobrazuje Riemannova koule.

Na obrázku je zobrazen vztah mezi komplexním číslem a číslem sdruženým v komplexní rovině.

Zobrazení komplexního čísla v komplexní rovině.

Znázorňujeme-li čísla tímto způsobem, pak součet dvou čísel odpovídá vektorovému součtu jejich průvodičů (tzv. rovnoběžníkové pravidlo).

Při násobení je argument součinu roven součtu argumentů jednotlivých činitelů a absolutní hodnota výsledku je rovna součinu absolutních hodnot násobených čísel. To geometricky odpovídá přímé podobnosti - otočení okolo počátku složenému se stejnolehlostí se středem v počátku.

Související články