Diferenciální forma

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Diferenciální forma stupně k neboli diferenciální k-forma je matematické zobecnění funkcí na hladké varietě. Formálně jde o funkci s hodnotami ve vnější tenzorové mocnině konečného prostoru. Ekvivalentně, diferenciální forma je antisymetrická multilineární funkce, která k vektorovým polím přiřadí skalární funkci.

Méně formálně, diferenciální -forma je objekt, který se dá integrovat přes k-rozměrné podvariety.

Někdy se pod pojmem diferenciální forma rozumí lineární diferenciální forma (1. stupně, 1-forma, Pfaffova forma), které mají důležité uplatnění např. v termodynamice. V souřadnicích se dá lokálně vyjádřit jako

.

Příklad[editovat | editovat zdroj]

Nejznámější příklad je diferenciál funkce , který se v lokálních souřadnicích dá vyjádřit jako

. Toto vyjádření nezávisí na volbě souřadnic a pro vektorové pole je (derivace funkce vektorovým polem ).

Definice[editovat | editovat zdroj]

je hladká varieta. Zobrazení nazveme vnější diferenciální -formou, pokud je hladké zobrazení a , kde je tzv. vnější mocnina vektorového prostoru . Často označujeme symbolem .

Prostor vnějších diferenciálních -forem označujeme symbolem .

Jsou-li souřadnice z atlasu na , potom kde je multindex délky a .

De Rhamův komplex[editovat | editovat zdroj]

Prostor diferenciálních forem stupně k na varietě M dimenze n se značí , prostor všech diferenciálních forem . Na prostoru k-forem je dán De Rhamův diferenciál . Posloupnost se nazývá De Rhamův komplex a jeho kohomologie jsou izomorfní singulárním kohomologiím s hodnotami v .