Lineární uspořádání: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Dinybot (diskuse | příspěvky)
m robot: stylistické, typografické a kódové korekce a náhrady přesměrování podle specifikace
Chrupoš (diskuse | příspěvky)
→‎Definice: - doplnění poznámky pro neostré lineární uspořádání
Řádek 4: Řádek 4:
Řekneme, že [[uspořádání]] (ať již [[ostré uspořádání|ostré]] nebo [[neostré uspořádání|neostré]]) je '''lineární''', pokud se (kromě ostatních vlastností požadovaných definicí uspořádání) jedná o [[Trichotomická relace|trichotomickou]] [[Binární relace|relaci]].
Řekneme, že [[uspořádání]] (ať již [[ostré uspořádání|ostré]] nebo [[neostré uspořádání|neostré]]) je '''lineární''', pokud se (kromě ostatních vlastností požadovaných definicí uspořádání) jedná o [[Trichotomická relace|trichotomickou]] [[Binární relace|relaci]].


Rozepišme si podrobněji, co všechno musí být splněno, na příkladu ostrého lineárního uspořádání:
Rozepišme si podrobněji, co všechno musí být splněno, na příkladu ostrého lineárního uspořádání (pro neostré lineární uspořádání musí být antireflexivita nahrazena [[Reflexivní relace|reflexivitou]]):


Předpokládejme, že máme relaci <math> R \,\! </math> na [[Množina|množině]] <math> X \,\! </math>, a <math> a,b,c \isin X \,\! </math> jsou nějaké její libovolné prvky. Abychom mohli prohlásit tuto relaci za lineární uspořádání množiny <math> X \,\! </math>, musí být splněny tyto podmínky:
Předpokládejme, že máme relaci <math> R \,\! </math> na [[Množina|množině]] <math> X \,\! </math>, a <math> a,b,c \isin X \,\! </math> jsou nějaké její libovolné prvky. Abychom mohli prohlásit tuto relaci za lineární uspořádání množiny <math> X \,\! </math>, musí být splněny tyto podmínky:

Verze z 14. 10. 2006, 10:24

Lineární uspořádání je pojem z teorie uspořádání, který formálně zachycuje intuitivní představu o prvcích množiny, které jsou seřazeny "jeden za druhým".

Definice

Řekneme, že uspořádání (ať již ostré nebo neostré) je lineární, pokud se (kromě ostatních vlastností požadovaných definicí uspořádání) jedná o trichotomickou relaci.

Rozepišme si podrobněji, co všechno musí být splněno, na příkladu ostrého lineárního uspořádání (pro neostré lineární uspořádání musí být antireflexivita nahrazena reflexivitou):

Předpokládejme, že máme relaci na množině , a jsou nějaké její libovolné prvky. Abychom mohli prohlásit tuto relaci za lineární uspořádání množiny , musí být splněny tyto podmínky:

  1. tranzitivita:
  2. antireflexivita: pro žádný prvek nesmí platit
  3. antisymetrie:
  4. trichotomie:

Příklady

Relace je lineární uspořádání na množině přirozených čísel i reálných čísel.


Relace „číslo a je násobek čísla b“ není lineární uspořádání celých kladných čísel - sice je tranzitivní, ale není antireflexivní (2 je násobek 2) a není trichotomická (není pravda aní „2 je násobek 3“, ani „3 je násobek 2“, ani „2 = 3“).


Uvažujme o pětiprvkové množině X = {a,b,c,d,e} a relaci R = {[a,c],[a,d],[a,e],[b,c],[b,d],[c,d]}. Tato relace je tranzitivní, antireflexivní i antisymetrická. Není však trichotomická, protože například d a e jsou dva různé neporovnatelné prvky.

Podívejte se také na

Šablona:Portál matematika