Reflexivní relace

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

V logice a matematice se binární relace R na množině X nazývá reflexivní, pokud pro každé a z X platí, že a je v relaci se sebou samým.

Formálně zapsáno:

Nelze pochopit (Chyba konverze. Server („https://cs.wikipedia.org/api/rest_“) hlásí: „Cannot get mml. Server problem.“): {\displaystyle \forall a\in X,\ aRa}

Například „je větší nebo rovno“ je reflexivní relace, ale „je větší než“ reflexivní není.

Dalšími příklady reflexivních relací jsou:

Reflexivní relace, která je zároveň tranzitivní, se nazývá kvaziuspořádání. Kvaziuspořádání, které je slabě antisymetrické, se nazývá uspořádání. Kvaziuspořádání, které je symetrické, je relace ekvivalence.

Výraz

Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „/mathoid/local/v1/“:): {\displaystyle \forall a \in X,\ a = a}

se v některých systémech nazývá axiom rovnosti.