Obor hodnot

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Funkce zobrazuje množinu do množiny . Žlutý ovál uvnitř je obraz množiny při zobrazení . V tomto případě není pokryta celá množina a některé body z nelze získat jako obraz bodu z množiny při zobrazení .

Mějme nějakou funkci, nebo obecněji libovolné zobrazení z množiny do množiny . Pak množina těch prvků z , pro něž existuje prvek z takový, že , nazýváme oborem hodnot zobrazení . Méně formálně je obor hodnot zobrazení množina všech hodnot, kterých zobrazení nabývá. Obor hodnot zobrazení značíme , , , , popř. . Posledně jmenovaný symbol je zkratkou z anglického názvu pro obor hodnot (range[pozn. 1]) a je běžně používán v cizojazyčné literatuře. V matematické notaci pak lze obor hodnot zapsat jako

Jinak řečeno, uvažujme definiční obor nějakého zobrazení . Pak obraz tohoto definičního oboru při zobrazení je obor hodnot zobrazení . Neboli

Pro obor hodnot zobrazení zjevně platí

.

Příklad[editovat | editovat zdroj]

  • Funkce sinus nabývá pouze hodnot mezi -1 a 1, a proto je její obor hodnot interval .
  • Oborem hodnot absolutní hodnoty čísla jsou všechna nezáporná reálná čísla.
  • Oborem hodnot nemusí být jen čísla, lze sestrojit zobrazení, které vezme číslo a vrátí zobrazení. Uvažme například zobrazení , které vezme číslo a vrátí zobrazení . Neboli

kde označuje množinu spojitých funkcí definovaných na . Hodnotou zobrazení je tedy opět nějaké zobrazení , které zobrazuje reálná čísla na kladná reálná čísla, tj. .

Názvosloví[editovat | editovat zdroj]

Mějme zobrazení . V závislosti na tom, zda zobrazení při svém působení na množinu vyčerpá všechny prvky množiny , nebo ne, se zavádí následující názvosloví:

  • Pokud pro každý prvek množiny existuje prvek z množiny takový, že , tak nazýváme zobrazení surjektivní zobrazení, neboli říkáme, že zobrazení zobrazuje množinu na množinu .
  • Pokud naopak existuje prvek z množiny , pro něž nenajdeme jeho vzor v množině , tak říkáme, že zobrazení zobrazuje množinu do množiny . Tomuto případu odpovídá situace na obrázku. Tam je žlutou barvou vyznačen obor hodnot zobrazení (funkce) , zatímco modrou barvou jsou vyznačeny ty prvky množiny , pro něž neexistuje odpovídající , pro které by platilo . Uvedeného pojmu zobrazovat do množiny se užívá i případě, kdy se nestaráme o to, zda skutečně nepokryje celou množinu a připouštíme tak obě možnosti, tj. i tu, kdy je zobrazení surjektivní.

Speciální druhy oboru hodnot[editovat | editovat zdroj]

Ve funkcionální analýze se zavádí pojem esenciálního oboru hodnot. Buď množina vybavená mírou a nechť je nějaká komplexní funkce definovaná na , tj. . Pak pod pojmem esenciální obor hodnot funkce rozumíme množinu

Poznámky[editovat | editovat zdroj]

  1. V angličtině se pro množinu obvykle užívá pojmu codomain, v češtině tato množina nemá žádný zvláštní název. Obor hodnot zobrazení se pak anglicky nazývá range, ačkoli občas se lze setkat s tím, že za range je považována celá množina a obor hodnot zobrazení se pak označuje jako image. Pojem image je v širším kontextu však obecnější, jeho český ekvivalent je obraz množiny.

Literatura[editovat | editovat zdroj]

  • BLANK, Jiří; EXNER, Pavel; HAVLÍČEK, Miloslav. Lineární operátory v kvantové fyzice. Praha : Karolinum, 1993. ISBN 80-7066-586-6.  

Související články[editovat | editovat zdroj]