Materiálová derivace
Uvažujme určitou fyzikální veličinu Φ spjatou s hmotnou částicí kontinua, která je obecně proměnná v čase. Podle uvažovaného popisu (lagrangeovského i eulerovského), lze definovat následující derivace:[1]
Lokální derivace
[editovat | editovat zdroj]- ,
kde y značí prostorovou souřadnici. Tato derivace charakterizuje změnu veličiny Φ v pevném bodě prostoru.[1]
Materiálová derivace
[editovat | editovat zdroj]tato derivace značí změnu Φ dané hmotné částice. V této rovnosti x značí materiálovou souřadnici a je pevné (x=(x1,x2,x3)).[1]
Mezi oběma derivacemi existuje vztah, který získáme užitím transformačního vztahu popisujícího pohyb kontinua a vyjadřujícího časovou závislost mezi oběma souřadnicovými systémy:[1]: yi=yi(x1,x2,x3,t) (uvažujme pouze kartézský souřadnicový systém). Platí[1]
- ,
kde jsme derivaci: označili, jak je to běžné, jako rychlost dané částice kontinua.