Barvení grafu

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Obarvený graf – 3 barvy
Vrcholy Petersenova grafu jsou obarvitelné třemi barvami

Barvení grafu je jednou z disciplín teorie grafů, která se zabývá přiřazováním barev (téměř vždy reprezentovaných přirozenými čísly) různým objektům v grafu – vrcholům, hranám, stěnám atd. Nejčastěji jde o barvení vrcholů, ostatní případy (jako např. barvení sousedících ploch) lze na tento jednoduše převést.

Definice[editovat | editovat zdroj]

Nechť G = (V, E) je graf, k přirozené číslo. Zobrazení nazveme obarvením grafu G pomocí k barev, pokud pro každou hranu platí . Barevnost grafu (také chromatické číslo) G je minimální počet barev potřebný pro obarvení G. Značí se .

Některé vlastnosti [editovat | editovat zdroj]

  1. = 1 právě tehdy, skládá-li se G z izolovaných vrcholů (diskrétní graf)
  2. = |V| pro libovolný úplný graf
  3. právě tehdy, obsahuje-li G kružnici liché délky (ekvivalentně, není-li G bipartitní)
  4. pro libovolný rovinný graf (viz slavný problém čtyř barev)
  5. (maximální stupeň uzlu v grafu + 1)