Přeskočit na obsah

Sylvesterův zákon setrvačnosti

Z Wikipedie, otevřené encyklopedie

Sylvesterův zákon setrvačnosti je matematické tvrzení z oboru lineární algebry charakterizující vyjádření kvadratické formy diagonální maticí.

Znění věty

Pro každou kvadratickou formu f existuje báze, vůči které má f diagonální matici s prvky -1,0,1. Navíc, tato matice je, až na pořadí prvků, jednoznačná.

Důkaz

Existence

Buď matice formy . A je symetrická, takže existuje její spektrální rozklad , kde . Čili je diagonalizace formy. Pro na diagonále provedeme úpravu , kde je diagonální matice s prvky pro a pro .

Jednoznačnost

Nechť existují dvě různé diagonalizace pro bázi a prostoru . Buď libovolné a nechť má souřadnice a . Pak

,

.

Platí , protože pro nějakou regulární . Proto mají stejnou hodnost. Ukažme, že nutně . BÚNO nechť . Definujme prostory a . Pak .

Tedy existuje nenulový a pro něj máme z čehož dostaneme a zároveň , což je spor.

QED.