Jednotková kružnice

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Jednotková kružnice

Jednotková kružnice je kružnice se středem v počátku souřadnic a o poloměru 1 používaná v matematice pro definici např. goniometrických funkcí. Jejím zobecněním do vyšších rozměrů je jednotková koule.

Goniometrické funkce[editovat | editovat zdroj]

Výhoda jednotkové kružnice spočívá v tom, že goniometrické funkce jsou definovány poměry a číslo 1 se v poměrech neprojevuje (1 * a = a) nebo vytváří nepřímou úměrnost (1/a). Neprojeví se ani souřadnice jejího středu, protože leží v počátku [0,0]. Její rovnice je tudíž velice jednoduchá:

x2 + y2 = 1

Souřadnice bodů na jednotkové kružnici pak přímo udávají hodnoty funkcí sin a cos pro úhly, které jejich průvodiče svírají s kladnou poloosou x: x = cos φ a y = sin φ. Protože absolutní hodnoty těchto funkcí se po 180° opakují a pro úhly φ z intervalu 90-180° platí, že f(φ)=f(180°-φ), stačí je tabelovat jen pro interval 0-90° a jejich znaménka pak udává následující tabulka:

  α sin α cos α tg α cotg α
1. kvadrant 0–90° + + + +
2. kvadrant 90–180° +
3. kvadrant 180–270° + +
4. kvadrant 270–360° +

Periodičnost[editovat | editovat zdroj]

Na jednotkové kružnici lze také sledovat tzv. periodu: bod A může po kružnici obíhat zcela libovolně, a to i několikrát, takže jeho průvodič (polopřímkaSA) může s kladnou poloosou x svírat nekonečně mnoho úhlů, jež se od sebe liší o 2π čili o 3600. Tak se s polopřímkou svírající s kladnou poloosou x úhel \frac{\pi}{3} (tj. 60°) budou překrývat i polopřímky s úhly \frac{7 \pi}{3} (420°), \frac{13 \pi}{3} (780°), -\frac{5 \pi}{3} (-300°) nebo -\frac{13 \pi}{3} (-780°). Na tom se zakládá periodičnost goniometrických funkcí.

Odkazy[editovat | editovat zdroj]

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]

Kategorie Unit circles ve Wikimedia Commons

  • Tento článek využívá informace z odpovídajícího článku německé Wikipedie.