Částečně rekurzivní funkce

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Částečně rekurzivní funkce (ČRF) je termín, kterým se v teorii vyčíslitelnosti označují funkce v jistém smyslu „složitější“ než tzv. primitivně rekurzivní funkce

Definice[editovat | editovat zdroj]

Axiomy a operátory jsou stejné jako u primitivně rekurzivních funkcí. Třída ČRF je pak definovaná jako nejmenší třída funkcí, která obsahuje axiomy a je uzavřená na všechny tři operátory, tedy primitivní rekurzi, substituci i minimalizaci. Právě operátorem minimalizace se ČRF liší od PRF - zavádí totiž do výpočtu funkce potenciálně nekonečný cyklus.

Vlastnosti[editovat | editovat zdroj]

  • částečně rekurzivní funkce nejsou obecně definovány pro každý vstup - pokud je např. hodnota f(x) nedefinována, říkáme, že funkce f v bodě x diverguje a píšeme obvykle f(x)\uparrow
  • podmnožina všude definovaných ČRF se nazývá třída obecně rekurzivních funkcí (ORF) , také třída totálních rekurzivních funkcí či jen rekurzivních funkcí
  • platí, že PRF je vlastní podmnožinou ORF, a ta je vlastní podmnožinou ČRF
  • existuje tzv. univerzální částečně rekurzivní funkce, která kromě vlastních argumentů dostává ještě index ČRF, jejíž hodnotu při daných argumentech vyčísluje. Tato univerzální funkce je ve smyslu výpočetní síly ekvivalentní s Turingovým strojem

Příklady[editovat | editovat zdroj]

Tyto funkce jsou částečně, ale ne primitivně, rekurzivní: