NP-úplnost: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
m link
Řádek 7: Řádek 7:


== Využití NP-úplných úloh ==
== Využití NP-úplných úloh ==
Hlavní důvod, proč jsou NP-úplné úlohy tak zajímavé, je právě jejich velmi obtížná řešitelnost. Díky ní nacházejí uplatnění v moderní [[kryptografie|kryptografii]], kde musíme být schopni rychle ověřovat správnost řešení, ale jeho nalezení musí trvat dlouho. Obtížnost výpočtu ovšem záleží i na konkrétních datech, pro speciální množinu vstupů může být úloha polynomiální, například řešíme-li obarvení třemi barvami pro jednoduché grafy (cesty).
Hlavní důvod, proč jsou NP-úplné úlohy tak zajímavé, je právě jejich velmi obtížná řešitelnost. Díky ní nacházejí uplatnění v moderní [[kryptografie|kryptografii]], kde musíme být schopni rychle ověřovat správnost řešení, ale jeho nalezení musí trvat dlouho. Obtížnost výpočtu ovšem záleží i na konkrétních datech pro speciální množinu vstupů může být úloha polynomiální, například řešíme-li obarvení třemi barvami pro jednoduché grafy (cesty).


== Řešení NP-úplných úloh ==
== Řešení NP-úplných úloh ==

Verze z 30. 7. 2016, 05:18

NP-úplné (NP-complete, NPC) problémy jsou takové nedeterministicky polynomiální problémy, na které jsou polynomiálně redukovatelné všechny ostatní problémy z NP. To znamená, že třídu NP-úplných úloh tvoří v jistém smyslu ty nejtěžší úlohy z NP. Pokud by byl nalezen polynomiální deterministický algoritmus pro nějakou NP-úplnou úlohu, znamenalo by to, že všechny nedeterministicky polynomiální problémy jsou řešitelné v polynomiálním čase, tedy že třída NP se „zhroutí“ do třídy P (NP = P). Otázka, zda nějaký takový algoritmus existuje, zatím nebyla rozhodnuta, předpokládá se však, že NP ≠ P (je však zřejmé, že P ⊆ NP). Více o tomto problému najdete v článku Problém P versus NP.

Vztah mezi P a NP je jedním ze sedmi problémů tisíciletí, které vypsal Clayův matematický ústav 24. května 2000. Za rozhodnutí vztahu nabízí 1 000 000 dolarů.

Příklady NP-úplných úloh

Mezi typické NP-úplné úlohy patří např. problém obchodního cestujícího, tj. hledání (nejkratší) hamiltonovské kružnice, SAT (splnitelnost formule v KNF), hledání nezávislé množiny, problém kliky (hledání úplného podgrafu), hledání isomorfního podgrafu, 3barevnost grafu, vrcholové pokrytí, zavazadlový problém (tzv. problém batohu), problém dvou loupežníků atd.

Využití NP-úplných úloh

Hlavní důvod, proč jsou NP-úplné úlohy tak zajímavé, je právě jejich velmi obtížná řešitelnost. Díky ní nacházejí uplatnění v moderní kryptografii, kde musíme být schopni rychle ověřovat správnost řešení, ale jeho nalezení musí trvat dlouho. Obtížnost výpočtu ovšem záleží i na konkrétních datech — pro speciální množinu vstupů může být úloha polynomiální, například řešíme-li obarvení třemi barvami pro jednoduché grafy (cesty).

Řešení NP-úplných úloh