Dimenze vektorového prostoru: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Glivi (diskuse | příspěvky)
→‎Příklady: symbolický zápis
Thijs!bot (diskuse | příspěvky)
Řádek 32: Řádek 32:
[[fr:Dimension d'un espace vectoriel]]
[[fr:Dimension d'un espace vectoriel]]
[[it:Dimensione (spazio vettoriale)]]
[[it:Dimensione (spazio vettoriale)]]
[[nl:Dimensie van een vectorruimte]]
[[nl:Dimensie (lineaire algebra)]]
[[sr:Димензија векторског простора]]
[[sr:Димензија векторског простора]]

Verze z 26. 2. 2007, 12:53

Dimenzí (nebo také rozměrem) vektorového prostoru nazýváme počet prvků libovolné báze tohoto prostoru. Triviálnímu vektorovému prostoru {0}, který nemá žádnou bázi, přiřazujeme dimenzi 0.

Vektorový prostor dimenze zapisujeme jako , popř. píšeme . Prostor nazýváme -rozměrným vektorovým prostorem. Pokud je dimenze konečná, příslušný vektorový prostor se označuje jako konečněrozměrný.

Příklady

  • Vektorový prostor má bázi o třech prvcích, takže jeho dimenze je 3. Obecně platí, že a ještě obecněji (pro libovolné těleso ).
  • Komplexní čísla jako vektorový prostor nad tělesem reálných čísel mají dimenzi 2, jako vektorový prostor nad tělesem komplexních čísel však mají dimenzi 1.
  • Vektorový prostor polynomů s reálnými koeficienty má bázi o nekonečně mnoha prvcích, dimenze tohoto prostoru je proto (alef 0).

Vlastnosti

Je-li podprostorem prostoru , pak platí , přičemž rovnost nastává pouze tehdy, pokud . Libovolné dva konečněrozměrné vektorové prostory nad stejným tělesem se stejnou dimenzí jsou izomorfní.

Pokud je rozšíření tělesa , je vektorový prostor nad tělesem a libovolný vektorový prostor nad tělesem je také vektorový prostor nad tělesem , přičemž platí

Příkladem je fakt, že libovolný komplexní vektorový prostor dimenze je současně reálným vektorovým prostorem dimenze .

Pokud je vektorový prostor nad tělesem , platí:

  • Pokud je konečné, pak ,
  • pokud je nekonečné, pak .

Podívejte se také na