Kombinace

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Další významy jsou uvedeny v článku Kombinace (rozcestník).

Kombinace -té třídy z prvků je skupina prvků vybraných z celkového počtu prvků, přičemž při výběru nezáleží na pořadí jednotlivých prvků. Rozlišujeme kombinace s opakováním a bez opakování.

Kombinace bez opakování[editovat | editovat zdroj]

Počet kombinací -té třídy z prvků bez opakování, tzn. žádný prvek výběru se nemůže opakovat, je

,

kde představuje kombinační číslo.

Příklad[editovat | editovat zdroj]

Mějme skupinu tří prvků , tzn. .

Chceme-li z těchto prvků vybrat vždy jen jeden prvek, můžeme to udělat třemi možnými způsoby, tzn. vybereme nebo nebo . Jedná se o kombinaci první třídy, tzn. , a tedy počet výběrů je roven

Chceme-li z uvedené trojice prvků vybrat vždy dva, přičemž nám nezáleží na pořadí a žádný prvek nemůžeme vybrat vícekrát, můžeme získat následující dvojice prvků: , , . Jedná se o kombinaci druhé třídy (tedy ) bez opakování. Pro počet dvojic pak dostáváme

Pokud chceme z uvedené trojice prvků vybrat vždy tři, přičemž nám nezáleží na pořadí a žádný prvek nemůžeme vybrat vícekrát, můžeme získat pouze jedinou trojici prvků: . Jedná se o kombinaci třetí třídy (tedy ) bez opakování. Pro počet trojic tedy platí

Kombinace s opakováním[editovat | editovat zdroj]

Počet kombinací -té třídy z prvků s opakováním, tzn. každý prvek se ve výběru může objevit vícekrát, je určen vztahem

Příklad[editovat | editovat zdroj]

Mějme skupinu dvou prvků , tzn. .

Chceme-li z těchto prvků vybrat vždy jen jeden prvek, můžeme to udělat dvěma možnými způsoby, tzn. vybereme nebo . Jedná se o kombinaci první třídy, tzn. , a tedy počet výběrů je roven

Je vidět, že u kombinací první třídy není třeba rozlišovat, zda jsou s opakováním nebo bez opakování.


Chceme-li z uvedené dvojice prvků vybrat vždy dva, přičemž nám nezáleží na pořadí a každý prvek můžeme vybrat vícekrát, můžeme získat následující dvojice prvků: , , . Jedná se o kombinaci druhé třídy (tedy ) s opakováním. Pro počet dvojic pak dostáváme

Obdobně bychom dostali , atd.

Literatura[editovat | editovat zdroj]

  • Odmaturuj z matematiky. [s.l.] : Didaktis, 2003 (druhé opravené vydání). ISBN 80-86285-97-9. Kapitola 35.Kombinatorika. (česky)  

Související články[editovat | editovat zdroj]

Externí odkazy[editovat | editovat zdroj]

  • Slovníkové heslo kombinace ve Wikislovníku